64 resultados para Lattice distortions
Resumo:
After reviewing how simulations employing classical lattice gauge theory permit to test a conjectured Euclideanization property of a light-cone Wilson loop in a thermal non-Abelian plasma, we show how Euclidean data can in turn be used to estimate the transverse collision kernel, C(k⊥), characterizing the broadening of a high-energy jet. First results, based on data produced recently by Panero et al, suggest that C(k⊥) is enhanced over the known NLO result in a soft regime k⊥ < a few T. The shape of k3⊥ C(k⊥) is consistent with a Gaussian at small k⊥.
Resumo:
The behavior of bottomonium state correlators at non-zero temperature, 140.4(β = 6.664) ≤ T ≤ 221(β = 7.280) (MeV), where the transition temperature is 154(9) (MeV), is studied, using lattice NRQCD on 48³ ×12 HotQCD HiSQ action configurations with light dynamical Nf = 2+1 (mu,s/ms = 0.05) staggered quarks. In order to understand finite temperature effects on quarkonium states, zero temperature behavior of bottomonium correlators is compared based on 32⁴ (β = 6.664,6.800 and 6.950) and 48³ ×64 (β = 7.280) lattices. We find that temperature effects on S-wave bottomoniumstates are small but P-wave bottomoniumstates show a noticeable temperature dependence above the transition temperature.
Resumo:
We use quantum link models to construct a quantum simulator for U(N) and SU(N) lattice gauge theories. These models replace Wilson’s classical link variables by quantum link operators, reducing the link Hilbert space to a finite number of dimensions. We show how to embody these quantum link models with fermionic matter with ultracold alkaline-earth atoms using optical lattices. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can thus address the corresponding dynamics in real time. Using exact diagonalization results we show that these systems share qualitative features with QCD, including chiral symmetry breaking and we study the expansion of a chirally restored region in space in real time.
Resumo:
A variety of lattice discretisations of continuum actions has been considered, usually requiring the correct classical continuum limit. Here we discuss “weird” lattice formulations without that property, namely lattice actions that are invariant under most continuous deformations of the field configuration, in one version even without any coupling constants. It turns out that universality is powerful enough to still provide the correct quantum continuum limit, despite the absence of a classical limit, or a perturbative expansion. We demonstrate this for a set of O(N) models (or non-linear σ-models). Amazingly, such “weird” lattice actions are not only in the right universality class, but some of them even have practical benefits, in particular an excellent scaling behaviour.
Resumo:
The quantum dimer model on the square lattice is a U(1) gauge theory that addresses aspects of the physics of high-Tc superconductors. Using a quantum Monte Carlo method, we show that the theory exists in a confining columnar valence bond solid phase. The interfaces separating distinct columnar phases display plaquette order, which, however, is not realized as a bulk phase. Static “electric” charges are confined by flux tubes that consist of multiple strands, each carrying a fractionalized flux ¼. A soft pseudo-Goldstone mode (which becomes exactly massless at the Rokhsar-Kivelson point) extends deep into the columnar phase, with potential implications for high-Tc physics.
Holes localized on a Skyrmion in a doped antiferromagnet on the honeycomb lattice: Symmetry analysis
Resumo:
Using the low-energy effective field theory for hole-doped antiferromagnets on the honeycomb lattice, we study the localization of holes on Skyrmions, as a potential mechanism for the preformation of Cooper pairs. In contrast to the square lattice case, for the standard radial profile of the Skyrmion on the honeycomb lattice, only holes residing in one of the two hole pockets can get localized. This differs qualitatively from hole pairs bound by magnon exchange, which is most attractive between holes residing in different momentum space pockets. On the honeycomb lattice, magnon exchange unambiguously leads to f-wave pairing, which is also observed experimentally. Using the collective-mode quantization of the Skyrmion, we determine the quantum numbers of the localized hole pairs. Again, f-wave symmetry is possible, but other competing pairing symmetries cannot be ruled out.
Resumo:
We study representations of MV-algebras -- equivalently, unital lattice-ordered abelian groups -- through the lens of Stone-Priestley duality, using canonical extensions as an essential tool. Specifically, the theory of canonical extensions implies that the (Stone-Priestley) dual spaces of MV-algebras carry the structure of topological partial commutative ordered semigroups. We use this structure to obtain two different decompositions of such spaces, one indexed over the prime MV-spectrum, the other over the maximal MV-spectrum. These decompositions yield sheaf representations of MV-algebras, using a new and purely duality-theoretic result that relates certain sheaf representations of distributive lattices to decompositions of their dual spaces. Importantly, the proofs of the MV-algebraic representation theorems that we obtain in this way are distinguished from the existing work on this topic by the following features: (1) we use only basic algebraic facts about MV-algebras; (2) we show that the two aforementioned sheaf representations are special cases of a common result, with potential for generalizations; and (3) we show that these results are strongly related to the structure of the Stone-Priestley duals of MV-algebras. In addition, using our analysis of these decompositions, we prove that MV-algebras with isomorphic underlying lattices have homeomorphic maximal MV-spectra. This result is an MV-algebraic generalization of a classical theorem by Kaplansky stating that two compact Hausdorff spaces are homeomorphic if, and only if, the lattices of continuous [0, 1]-valued functions on the spaces are isomorphic.
Resumo:
Simulations of supersymmetric field theories on the lattice with (spontaneously) broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We propose a novel approach which solves this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. For N=2 supersymmetric quantum mechanics the loop formulation becomes particularly simple and in this paper – the first in a series of three – we discuss in detail the reformulation of this model in terms of fermionic and bosonic bonds for various lattice discretisations including one which is Q-exact.
Resumo:
Tephra layers preserved within the Greenland ice-cores are crucial for the independent synchronisation of these high-resolution records to other palaeoclimatic archives. Here we present a new and detailed tephrochronological framework for the time period 25,000 e 45,000 a b2k that brings together results from 4 deep Greenland ice-cores. In total, 99 tephra deposits, the majority of which are preserved as cryptotephra, are described from the NGRIP, NEEM, GRIP and DYE-3 records. The major element signatures of single glass shards within these deposits indicate that 93 are basaltic in composition all originating from Iceland. Specifically, 43 originate from Grimsv € otn, 20 are thought to be sourced from the Katla volcanic system and 17 show affinity to the Kverkfj € oll system. Robust geochemical characterisations, independent ages derived from the GICC05 ice-core chronology, and the stratigraphic positions of these deposits relative to the Dansgaard-Oeschger climate events represent a key framework that provides new information on the frequency and nature of volcanic events in the North Atlantic region between GS-3 and GI-12. Of particular importance are 19 tephra deposits that lie on the rapid climatic transitions that punctuate the last glacial period. This framework of well-constrained, time-synchronous tie-lines represents an important step towards the independent synchronisation of marine, terrestrial and ice-core records from the North Atlantic region, in order to assess the phasing of rapid climatic changes during the last glacial period.
Resumo:
Simulations of supersymmetric field theories with spontaneously broken supersymmetry require in addition to the ultraviolet regularisation also an infrared one, due to the emergence of the massless Goldstino. The intricate interplay between ultraviolet and infrared effects towards the continuum and infinite volume limit demands careful investigations to avoid potential problems. In this paper – the second in a series of three – we present such an investigation for N=2 supersymmetric quantum mechanics formulated on the lattice in terms of bosonic and fermionic bonds. In one dimension, the bond formulation allows to solve the system exactly, even at finite lattice spacing, through the construction and analysis of transfer matrices. In the present paper we elaborate on this approach and discuss a range of exact results for observables such as the Witten index, the mass spectra and Ward identities.
Resumo:
In the fermion loop formulation the contributions to the partition function naturally separate into topological equivalence classes with a definite sign. This separation forms the basis for an efficient fermion simulation algorithm using a fluctuating open fermion string. It guarantees sufficient tunnelling between the topological sectors, and hence provides a solution to the fermion sign problem affecting systems with broken supersymmetry. Moreover, the algorithm shows no critical slowing down even in the massless limit and can hence handle the massless Goldstino mode emerging in the supersymmetry broken phase. In this paper – the third in a series of three – we present the details of the simulation algorithm and demonstrate its efficiency by means of a few examples.
Resumo:
Fermion boundary conditions play a relevant role in revealing the confinement mechanism of N=1 supersymmetric Yang-Mills theory with one compactified space-time dimension. A deconfinement phase transition occurs for a sufficiently small compactification radius, equivalent to a high temperature in the thermal theory where antiperiodic fermion boundary conditions are applied. Periodic fermion boundary conditions, on the other hand, are related to the Witten index and confinement is expected to persist independently of the length of the compactified dimension. We study this aspect with lattice Monte Carlo simulations for different values of the fermion mass parameter that breaks supersymmetry softly. We find a deconfined region that shrinks when the fermion mass is lowered. Deconfinement takes place between two confined regions at large and small compactification radii, that would correspond to low and high temperatures in the thermal theory. At the smallest fermion masses we find no indication of a deconfinement transition. These results are a first signal for the predicted continuity in the compactification of supersymmetric Yang-Mills theory.
Resumo:
We regularize compact and non-compact Abelian Chern–Simons–Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group R, each local Hilbert space is analogous to the one of a charged “particle” moving in the link-pair group space R2 in a constant “magnetic” background field. In the compact case, the link-pair group space is a torus U(1)2 threaded by k units of quantized “magnetic” flux, with k being the level of the Chern–Simons theory. The holonomies of the torus U(1)2 give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry from U(1) to Z(k). The local Hilbert space of a link-pair then decomposes into representations of a magnetic translation group. In the pure Chern–Simons limit of a large “photon” mass, this results in a Z(k)-symmetric variant of Kitaev’s toric code, self-adjointly extended by the two non-dynamical background lattice gauge fields. Electric charges on the original lattice and on the dual lattice obey mutually anyonic statistics with the statistics angle . Non-Abelian U(k) Berry gauge fields that arise from the self-adjoint extension parameters may be interesting in the context of quantum information processing.