50 resultados para Invertebrates, Fossil


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Recent theoretical studies suggest that the stability of ecosystem processes is not governed by diversity per se, but by multitrophic interactions in complex communities. However, experimental evidence supporting this assumption is scarce.2. We investigated the impact of plant diversity and the presence of above- and below-ground invertebrates on the stability of plant community productivity in space and time, as well as the interrelationship between both stability measures in experimental grassland communities.3. We sampled above-ground plant biomass on subplots with manipulated above- and below-ground invertebrate densities of a grassland biodiversity experiment (Jena Experiment) 1, 4 and 6 years after the establishment of the treatments to investigate temporal stability. Moreover, we harvested spatial replicates at the last sampling date to explore spatial stability.4. The coefficient of variation of spatial and temporal replicates served as a proxy for ecosystem stability. Both spatial and temporal stability increased to a similar extent with plant diversity. Moreover, there was a positive correlation between spatial and temporal stability, and elevated plant density might be a crucial factor governing the stability of diverse plant communities.5. Above-ground insects generally increased temporal stability, whereas impacts of both earthworms and above-ground insects depended on plant species richness and the presence of grasses. These results suggest that inconsistent results of previous studies on the diversity–stability relationship have in part been due to neglecting higher trophic-level interactions governing ecosystem stability.6. Changes in plant species diversity in one trophic level are thus unlikely to mirror changes in multitrophic interrelationships. Our results suggest that both above- and below-ground invertebrates decouple the relationship between spatial and temporal stability of plant community productivity by differently affecting the homogenizing mechanisms of plants in diverse plant communities.7.Synthesis. Species extinctions and accompanying changes in multitrophic interactions are likely to result not only in alterations in the magnitude of ecosystem functions but also in its variability complicating the assessment and prediction of consequences of current biodiversity loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diatom analyses with an annual resolution were carried out on varves of the hypertrophic Baldeggersee (Central Swiss Plateau) for the timespan ad 1885 to 1993. They reveal seven major changes in the dominant planktonic diatoms. As a result of progressive nutrient enrichment, Baldeggersee changed in the 1910s from a Cyclotella to a Tabellaria fenestrata dominated assemblage, and eventually in the 1950s to a Stephanodiscus parvus dominated diatom assemblage. The timing and direction of diatom-assemblage changes in the varved sediment compare well with sedimentological and limnological observations. Partitioning of the variance in the diatom data revealed that TP is a stronger explanatory variable than temperature for these changes. A diatom-inferred total phosphorus (TP) reconstruction indicates three major steps in eutrophication, occurring at 1909, the mid-1950s and the mid-1970s. Comparison with TP measurements in the water column demonstrates that the diatom-TP inference model used is able to hindcast past TP concentrations reliably. The major steps in eutrophication led to decreases in diatom diversity and also resulted in a progressive increase of calcite grain-size. The lake restoration programme established since 1982 shows no direct impact on the composition of the diatom assemblages. However, the decrease in phosphorus loads since the mid-1970s is reflected in the diatom assemblages and in decreasing diatom-inferred TP concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ngm-3 and black carbon (BC) up to 17 μgm-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf/ was the dominant fraction of PM1, with the primary (POCnf/ and secondary (SOCnf/ fractions contributing 26–44% and 13–23% to the total carbon (TC), respectively. 5–8% of the TC had a primary fossil origin (POCf/, whereas the contribution of fossil secondary organic carbon (SOCf/ was 4–13 %. Nonfossil EC (ECnf/ and fossil EC (ECf/ ranged from 13–24 and 7–13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1−1.3 μg m−3). The remaining 24 ± 11% (0.03−0.42 μg m−3) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5−2.8 μg m−3), approximately half of which was apportioned to primary biomass burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions.