81 resultados para Interactions and Diffusion
Resumo:
CASE PRESENTATION: A substance abusing G2P1 mother spontaneously delivered at term an appropriate for gestational age girl. Neonatal seizures appeared at 21 hours and empiric anticonvulsive and antimicrobial treatment was started. At 25 hours, first vesicles appeared. While routine evaluations remained normal, a head CT revealed multifocal ischemic injuries, and a later MRI showed multifocal petechiae and diffusion abnormalities in the corticospinal tracts. The clinical diagnosis of incontinentia pigmenti (stage 1) was secured by histopathology. Follow-up at 13 months showed global developmental delay. DISCUSSION: We discuss the unusually early bilateral, fronto-occipital corticomedullar ischemias (CT day 3). On the MR imaging (day 7) extensive symmetric cerebral corticomedullar destruction and diffusion sequences with corticospinal tracts abnormalities are seen, which then evolve (day 26) to extensive symmetric cerebral destruction. We review the literature, genetics, suspected pathophysiology and possible neonatal manifestation. CONCLUSION: Incontinentia pigmenti is rare and, therefore, diagnosis is frequently delayed. Nevertheless, in the setting of therapy refractory seizures, excluded infections, and linear vesicular rash, a high index of suspicion is needed. This is the first report of simultaneous corticomedullar involvement as early as the third day of life.
Resumo:
PURPOSE OF REVIEW: During recent years, (chemo)radiotherapy has evolved into a primary treatment modality for both early and advanced laryngeal and hypopharyngeal carcinomas. Head and neck surgeons will be concerned more frequently with patients presenting symptoms and signs suggesting recurrent tumor or complications of (chemo)radiotherapy. RECENT FINDINGS: Analysis of histologic characteristics and tumor spread of recurrent carcinomas on whole-organ slices of salvage laryngectomy specimens showed that recurrent laryngeal carcinomas are often present with multiple tumor foci dispersed in different regions; furthermore, they may develop beneath an intact mucosa. Only a few articles analyze the reliability of laryngoscopy and biopsy in detecting recurrences after (chemo)radiotherapy: the number of false negative biopsies is relatively high. The differentiation between radionecrosis and tumor recurrence is difficult by computed tomography scan and magnetic resonance imaging in many cases. Positron emission tomography-computed tomography and diffusion-weighted magnetic resonance imaging are promising diagnostic modalities to detect or exclude persistent or recurrent disease after (chemo)radiotherapy. SUMMARY: Endoscopy with biopsy, computed tomography scan and conventional magnetic resonance imaging present several deficiencies in diagnosing recurrent disease after (chemo)radiotherapy. New imaging modalities such as positron emission tomography-computed tomography and diffusion-weighted magnetic resonance imaging show promising results, increasing the diagnostic efficacy.
Resumo:
SUMMARY: Multimodal imaging was performed in Rasmussen Encephalitis (RE) during episodes of complex-partial and focal motor status epilepticus including independent component analysis of BOLD-fMRI, arterial spin labeling perfusion imaging and diffusion tensor imaging. The active epileptic network and topographically independent brain areas showed regional hyperperfusion and progressive atrophy. The results suggest that hyperperfusion outside of the epileptic network represent active inflammation in RE and the imaging protocol presented here, allows assessing thereby the disease activity non-invasively.
Resumo:
Multi-parametric and quantitative magnetic resonance imaging (MRI) techniques have come into the focus of interest, both as a research and diagnostic modality for the evaluation of patients suffering from mild cognitive decline and overt dementia. In this study we address the question, if disease related quantitative magnetization transfer effects (qMT) within the intra- and extracellular matrices of the hippocampus may aid in the differentiation between clinically diagnosed patients with Alzheimer disease (AD), patients with mild cognitive impairment (MCI) and healthy controls. We evaluated 22 patients with AD (n=12) and MCI (n=10) and 22 healthy elderly (n=12) and younger (n=10) controls with multi-parametric MRI. Neuropsychological testing was performed in patients and elderly controls (n=34). In order to quantify the qMT effects, the absorption spectrum was sampled at relevant off-resonance frequencies. The qMT-parameters were calculated according to a two-pool spin-bath model including the T1- and T2 relaxation parameters of the free pool, determined in separate experiments. Histograms (fixed bin-size) of the normalized qMT-parameter values (z-scores) within the anterior and posterior hippocampus (hippocampal head and body) were subjected to a fuzzy-c-means classification algorithm with downstreamed PCA projection. The within-cluster sums of point-to-centroid distances were used to examine the effects of qMT- and diffusion anisotropy parameters on the discrimination of healthy volunteers, patients with Alzheimer and MCIs. The qMT-parameters T2(r) (T2 of the restricted pool) and F (fractional pool size) differentiated between the three groups (control, MCI and AD) in the anterior hippocampus. In our cohort, the MT ratio, as proposed in previous reports, did not differentiate between MCI and AD or healthy controls and MCI, but between healthy controls and AD.
Resumo:
OBJECTIVE: The aim of this study was to use morphological as well as biochemical (T2 and T2* relaxation times and diffusion-weighted imaging (DWI)) magnetic resonance imaging (MRI) for the evaluation of healthy cartilage and cartilage repair tissue after matrix-associated autologous chondrocyte transplantation (MACT) of the ankle joint. MATERIALS AND METHODS: Ten healthy volunteers (mean age, 32.4 years) and 12 patients who underwent MACT of the ankle joint (mean age, 32.8 years) were included. In order to evaluate possible maturation effects, patients were separated into short-term (6-13 months) and long-term (20-54 months) follow-up cohorts. MRI was performed on a 3.0-T magnetic resonance (MR) scanner using a new dedicated eight-channel foot-and-ankle coil. Using high-resolution morphological MRI, the magnetic resonance observation of cartilage repair tissue (MOCART) score was assessed. For biochemical MRI, T2 mapping, T2* mapping, and DWI were obtained. Region-of-interest analysis was performed within native cartilage of the volunteers and control cartilage as well as cartilage repair tissue in the patients subsequent to MACT. RESULTS: The overall MOCART score in patients after MACT was 73.8. T2 relaxation times (approximately 50 ms), T2* relaxation times (approximately 16 ms), and the diffusion constant for DWI (approximately 1.3) were comparable for the healthy volunteers and the control cartilage in the patients after MACT. The cartilage repair tissue showed no significant difference in T2 and T2* relaxation times (p > or = 0.05) compared to the control cartilage; however, a significantly higher diffusivity (approximately 1.5; p < 0.05) was noted in the cartilage repair tissue. CONCLUSION: The obtained results suggest that besides morphological MRI and biochemical MR techniques, such as T2 and T2* mapping, DWI may also deliver additional information about the ultrastructure of cartilage and cartilage repair tissue in the ankle joint using high-field MRI, a dedicated multichannel coil, and sophisticated sequences.
Resumo:
PURPOSE: To compare dynamic contrast material-enhanced magnetic resonance (MR) imaging and diffusion-weighted MR imaging for noninvasive evaluation of early and late effects of a vascular targeting agent in a rat tumor model. MATERIALS AND METHODS: The study protocol was approved by the local ethics committee for animal care and use. Thirteen rats with one rhabdomyosarcoma in each flank (26 tumors) underwent dynamic contrast-enhanced imaging and diffusion-weighted echo-planar imaging in a 1.5-T MR unit before intraperitoneal injection of combretastatin A4 phosphate and at early (1 and 6 hours) and later (2 and 9 days) follow-up examinations after the injection. Histopathologic examination was performed at each time point. The apparent diffusion coefficient (ADC) of each tumor was calculated separately on the basis of diffusion-weighted images obtained with low b gradient values (ADC(low); b = 0, 50, and 100 sec/mm(2)) and high b gradient values (ADC(high); b = 500, 750, and 1000 sec/mm(2)). The difference between ADC(low) and ADC(high) was used as a surrogate measure of tissue perfusion (ADC(low) - ADC(high) = ADC(perf)). From the dynamic contrast-enhanced MR images, the volume transfer constant k and the initial slope of the contrast enhancement-time curve were calculated. For statistical analyses, a paired two-tailed Student t test and linear regression analysis were used. RESULTS: Early after administration of combretastatin, all perfusion-related parameters (k, initial slope, and ADC(perf)) decreased significantly (P < .001); at 9 days after combretastatin administration, they increased significantly (P < .001). Changes in ADC(perf) were correlated with changes in k (R(2) = 0.46, P < .001) and the initial slope (R(2) = 0.67, P < .001). CONCLUSION: Both dynamic contrast-enhanced MR imaging and diffusion-weighted MR imaging allow monitoring of perfusion changes induced by vascular targeting agents in tumors. Diffusion-weighted imaging provides additional information about intratumoral cell viability versus necrosis after administration of combretastatin.
Substrate binding tunes conformational flexibility and kinetic stability of an amino acid antiporter
Resumo:
We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.
Resumo:
PURPOSE: To prospectively assess the potential of noninvasive diffusion-weighted magnetic resonance (MR) imaging to depict changes in microperfusion and diffusion in patients with acute unilateral ureteral obstruction. MATERIALS AND METHODS: The local ethics committee approved the study protocol. Informed consent was obtained. Diffusion-weighted MR imaging was performed in 21 patients (two women, 19 men; mean age, 43 years +/- 10 [standard deviation]) with acute unilateral ureteral obstruction due to a calculus diagnosed at unenhanced computed tomography. A control group (one woman, 15 men; mean age, 44 years +/- 12) underwent the same MR protocol. Standard processing yielded an apparent diffusion coefficient (ADC) ADCT; the separation of microperfusion and diffusion contributions yielded the perfusion fraction FP and the pure diffusion coefficient ADCD. ADCT, ADCD, and FP were compared between obstructed and contralateral unobstructed kidneys and with control values. For statistical analysis, nonparametric rank tests were used. A P value of less than .05 was considered significant. RESULTS: No significant differences were observed between the ADCT of the medulla or cortex of the obstructed and unobstructed kidneys. Compared with control kidneys, only medullary ADCT was slightly increased in the obstructed kidney (P < .04). However, the ADCD in the medulla of the obstructed and unobstructed kidneys was significantly higher than that in control subjects (201 x 10(-5) mm2/sec +/- 16 and 199 x 10(-5) mm2/sec +/- 20 vs 189 x 10(-5) mm2/sec +/- 12; P < .008 and P < .03, respectively). FP of the cortex of the obstructed kidney was significantly lower than that in the unobstructed kidney (20.2% +/- 4.8 vs 24.0% +/- 5.8; P < .002); FP of the medulla was slightly lower in the obstructed kidney than in the unobstructed kidney (18.3% +/- 5.9 vs 20.7% +/- 6.4; P = .05). CONCLUSION: Diffusion-weighted MR imaging allows noninvasive detection of changes in renal perfusion and diffusion during acute unilateral ureteral obstruction, as exemplified in patients with a ureteral calculus.
Resumo:
he physics program of the NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment at the CERN SPS consists of three subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2010) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in p+p, p+Pb interactions and nucleus-nucleus collisions, with the aim to identify the properties of the onset of deconfinement and find evidence for the critical point of strongly interacting matter. The NA61 experiment was approved at CERN in June 2007. The first pilot run was performed during October 2007. Calibrations of all detector components have been performed successfully and preliminary uncorrected spectra have been obtained. High quality of track reconstruction and particle identification similar to NA49 has been achieved. The data and new detailed simulations confirm that the NA61 detector acceptance and particle identification capabilities cover the phase space required by the T2K experiment. This document reports on the progress made in the calibration and analysis of the 2007 data.
Resumo:
Human-induced forest modification can alter parasite-host interactions and might change the persistence of host populations. We captured individuals of two widespread European passerines (Fringilla coelebs and Sylvia atricapilla) in southwestern Germany to disentangle the associations of forest types and parasitism by haemosporidian parasites on the body condition of birds. We compared parasite prevalence and parasite intensity, fluctuating asymmetries, leukocyte numbers, and the heterophil to lymphocyte ratio (H/L-ratio) among individuals from beech, mixed-deciduous and spruce forest stands. Based on the biology of bird species, we expected to find fewer infected individuals in beech or mixed-deciduous than in spruce forest stands. We found the highest parasite prevalence and intensity in beech forests for F. coelebs. Although, we found the highest prevalence in spruce forests for S. atricapilla, the highest intensity was detected in beech forests, partially supporting our hypothesis. Other body condition or health status metrics, such as the heterophil to lymphocyte ratio (H/L-ratio), revealed only slight differences between bird populations inhabiting the three different forest types, with the highest values in spruce for F. coelebs and in mixed-deciduous forests for S. atricapilla. A comparison of parasitized versus non-parasitized individuals suggests that parasite infection increased the immune response of a bird, which was detectable as high H/L-ratio. Higher infections with blood parasites for S. atricapilla in spruce forest indicate that this forest type might be a less suitable habitat than beech and mixed-deciduous forests, whereas beech forests seem to be a suboptimal habitat regarding parasitism for F. coelebs.
Resumo:
Mammalian members of the proton-coupled oligopeptide transporter family (SLC15) are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The driving force for uphill electrogenic symport is the chemical gradient and membrane potential which favors proton uptake into the cell along with the peptide/mimetic substrate. The peptide transporters are responsible for the absorption and conservation of dietary protein digestion products in the intestine and kidney, respectively, and in maintaining homeostasis of neuropeptides in the brain. They are also responsible for the absorption and disposition of a number of pharmacologically important compounds including some aminocephalosporins, angiotensin-converting enzyme inhibitors, antiviral prodrugs, and others. In this review, we provide updated information on the structure-function of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4) and PhT2 (SLC15A3), and their expression and localization in key tissues. Moreover, mammalian peptide transporters are discussed in regard to pharmacogenomic and regulatory implications on host pharmacology and disease, and as potential targets for drug delivery. Significant emphasis is placed on the evolving role of these peptide transporters as elucidated by studies using genetically modified animals. Whenever possible, the relevance of drug-drug interactions and regulatory mechanisms are evaluated using in vivo studies.
Resumo:
In aviary systems for laying hens, it is important to provide suitable nest access platforms in front of the nests, allowing hens to reach and explore each of the nests easily. This access platform is needed to achieve good nest acceptance by the hens and thereby prevent mislaid eggs. In the present experiment, the behavior of hens using 2 different nest access platforms, a plastic grid and 2 wooden perches, was examined. Furthermore, the nests were placed on both sides of the aviary rack (corridor side and outdoor side), either integrated into the aviary rack itself (integrated nest; IN) or placed on the walls of the pens (wall nest; WN), resulting in a 2 × 2 factorial design Four thousand five hundred white laying hens were housed in 20 test pens. The eggs in the nests and mislaid eggs were collected daily, and the behavior of hens on the nest accesses was filmed during wk 25 and 26, using focal observation and scan sampling methods. More balancing, body contact, and agonistic interactions were expected for nests with perches, whereas more walking and nest inspections were expected for nests with grids. There were more mislaid eggs and balancing found in pens equipped with nests with wooden perches. More agonistic interactions and balancing, less standing, and a longer duration of nest inspection were found with the WN compared with the IN. Interactions between platform design and position of the nests were found for duration of nest visits, body contact, and walking, with the highest amount for WN equipped with plastic grids. Nests on the corridor side were favored by the hens. Nest-related behaviors, such as nest inspection, standing, and walking, decreased over time as did the number of hens on the nest accesses, whereas sitting increased. These results indicate that the hens had more difficulties in gripping the perches as designed. The lower number of hens on the nest access platforms in front of IN may be due to a better distribution around nests and tier changes within the aviary rack. Based on these results, grids rather than perches provide for improved nesting behavior.
Resumo:
Several new oral anticoagulants are now on the Swiss market and the general practitioner faces new challenges regarding the management of these new drugs. This consensus document aims to answer to the most frequently asked questions regarding rivaroxaban and covers different topics such as indications, initiation of treatment, drug-drug interactions and perioperative management.
Resumo:
Based on the results from detailed structural and petrological characterisation and on up-scaled laboratory values for sorption and diffusion, blind predictions were made for the STT1 dipole tracer test performed in the Swedish A¨ spo¨ Hard Rock Laboratory. The tracers used were nonsorbing, such as uranine and tritiated water, weakly sorbing 22Na+, 85Sr2 +, 47Ca2 +and more strongly sorbing 86Rb+, 133Ba2 +, 137Cs+. Our model consists of two parts: (1) a flow part based on a 2D-streamtube formalism accounting for the natural background flow field and with an underlying homogeneous and isotropic transmissivity field and (2) a transport part in terms of the dual porosity medium approach which is linked to the flow part by the flow porosity. The calibration of the model was done using the data from one single uranine breakthrough (PDT3). The study clearly showed that matrix diffusion into a highly porous material, fault gouge, had to be included in our model evidenced by the characteristic shape of the breakthrough curve and in line with geological observations. After the disclosure of the measurements, it turned out that, in spite of the simplicity of our model, the prediction for the nonsorbing and weakly sorbing tracers was fairly good. The blind prediction for the more strongly sorbing tracers was in general less accurate. The reason for the good predictions is deemed to be the result of the choice of a model structure strongly based on geological observation. The breakthrough curves were inversely modelled to determine in situ values for the transport parameters and to draw consequences on the model structure applied. For good fits, only one additional fracture family in contact with cataclasite had to be taken into account, but no new transport mechanisms had to be invoked. The in situ values for the effective diffusion coefficient for fault gouge are a factor of 2–15 larger than the laboratory data. For cataclasite, both data sets have values comparable to laboratory data. The extracted Kd values for the weakly sorbing tracers are larger than Swedish laboratory data by a factor of 25–60, but agree within a factor of 3–5 for the more strongly sorbing nuclides. The reason for the inconsistency concerning Kds is the use of fresh granite in the laboratory studies, whereas tracers in the field experiments interact only with fracture fault gouge and to a lesser extent with cataclasite both being mineralogically very different (e.g. clay-bearing) from the intact wall rock.
Resumo:
Transport of volatile hydrocarbons in soils is largely controlled by interactions of vapours with the liquid and solid phase. Sorption on solids of gaseous or dissolved comPounds may be important. Since the contact time between a chemical and a specific sorption site can be rather short, kinetic or mass-transfer resistance effects may be relevant. An existing mathematical model describing advection and diffusion in the gas phase and diffusional transport from the gaseous phase into an intra-aggregate water phase is modified to include linear kinetic sorption on ps-solid and water-solid interfaces. The model accounts for kinetic mass transfer between all three phases in a soil. The solution of the Laplace-transformed equations is inverted numerically. We performed transient column experiments with 1,1,2-Trichloroethane, Trichloroethylene, and Tetrachloroethylene using air-dry solid and water-saturated porous glass beads. The breakthrough curves were calculated based on independently estimated parameters. The model calculations agree well with experimental data. The different transport behaviour of the three compounds in our system primarily depends on Henry's constants.