49 resultados para Initiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical–basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical–basal position or the identity of the induced structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Antiretroviral therapy (ART) initiation is now recommended irrespective of CD4 count. However data on the relationship between CD4 count at ART initiation and loss to follow-up (LTFU) are limited and conflicting. METHODS We conducted a cohort analysis including all adults initiating ART (2008-2012) at three public sector sites in South Africa. LTFU was defined as no visit in the 6 months before database closure. The Kaplan-Meier estimator and Cox's proportional hazards models examined the relationship between CD4 count at ART initiation and 24-month LTFU. Final models were adjusted for demographics, year of ART initiation, programme expansion and corrected for unascertained mortality. RESULTS Among 17 038 patients, the median CD4 at initiation increased from 119 (IQR 54-180) in 2008 to 257 (IQR 175-318) in 2012. In unadjusted models, observed LTFU was associated with both CD4 counts <100 cells/μL and CD4 counts ≥300 cells/μL. After adjustment, patients with CD4 counts ≥300 cells/μL were 1.35 (95% CI 1.12 to 1.63) times as likely to be LTFU after 24 months compared to those with a CD4 150-199 cells/μL. This increased risk for patients with CD4 counts ≥300 cells/μL was largest in the first 3 months on treatment. Correction for unascertained deaths attenuated the association between CD4 counts <100 cells/μL and LTFU while the association between CD4 counts ≥300 cells/μL and LTFU persisted. CONCLUSIONS Patients initiating ART at higher CD4 counts may be at increased risk for LTFU. With programmes initiating patients at higher CD4 counts, models of ART delivery need to be reoriented to support long-term retention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.