105 resultados para Horace H. Rackham School of Graduate Studies.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September, 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles.18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies.A detailed explanation and elaboration document is published separately and is freely available on the websites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE statement will contribute to improving the quality of reporting of observational studies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much medical research is observational. The reporting of observational studies is often of insufficient quality. Poor reporting hampers the assessment of the strengths and weaknesses of a study and the generalizability of its results. Taking into account empirical evidence and theoretical considerations, a group of methodologists, researchers, and editors developed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) recommendations to improve the quality of reporting of observational studies.The STROBE Statement consists of a checklist of 22 items, which relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to cohort studies, case-control studies and cross-sectional studies and four are specific to each of the three study designs. The STROBE Statement provides guidance to authors about how to improve the reporting of observational studies and facilitates critical appraisal and interpretation of studies by reviewers, journal editors and readers.This explanatory and elaboration document is intended to enhance the use, understanding, and dissemination of the STROBE Statement. The meaning and rationale for each checklist item are presented. For each item, one or several published examples and, where possible, references to relevant empirical studies and methodological literature are provided. Examples of useful flow diagrams are also included. The STROBE Statement, this document, and the associated web site (http://www.strobe-statement.org) should be helpful resources to improve reporting of observational research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed "Explanation and Elaboration" document is published separately and is freely available on the web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control and cross-sectional studies. We convened a two-day workshop, in September 2004, with methodologists, researchers and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the web sites of PLoS Medicine, Annals of Internal Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the websites of PLoS Medicine, Annals of Internal Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To estimate the prognosis over 5 years of HIV-1-infected, treatment-naive patients starting HAART, taking into account the immunological and virological response to therapy. DESIGN: A collaborative analysis of data from 12 cohorts in Europe and North America on 20,379 adults who started HAART between 1995 and 2003. METHODS: Parametric survival models were used to predict the cumulative incidence at 5 years of a new AIDS-defining event or death, and death alone, first from the start of HAART and second from 6 months after the start of HAART. Data were analysed by intention-to-continue-treatment, ignoring treatment changes and interruptions. RESULTS: During 61 798 person-years of follow-up, 1005 patients died and an additional 1303 developed AIDS. A total of 10 046 (49%) patients started HAART either with a CD4 cell count of less than 200 cells/microl or with a diagnosis of AIDS. The 5-year risk of AIDS or death (death alone) from the start of HAART ranged from 5.6 to 77% (1.8-65%), depending on age, CD4 cell count, HIV-1-RNA level, clinical stage, and history of injection drug use. From 6 months the corresponding figures were 4.1-99% for AIDS or death and 1.3-96% for death alone. CONCLUSION: On the basis of data collected routinely in HIV care, prognostic models with high discriminatory power over 5 years were developed for patients starting HAART in industrialized countries. A risk calculator that produces estimates for progression rates at years 1 to 5 after starting HAART is available from www.art-cohort-collaboration.org.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: There is concern regarding the possible health effects of cellular telephone use. We examined whether the source of funding of studies of the effects of low-level radiofrequency radiation is associated with the results of studies. We conducted a systematic review of studies of controlled exposure to radiofrequency radiation with health-related outcomes (electroencephalogram, cognitive or cardiovascular function, hormone levels, symptoms, and subjective well-being). DATA SOURCES: We searched EMBASE, Medline, and a specialist database in February 2005 and scrutinized reference lists from relevant publications. DATA EXTRACTION: Data on the source of funding, study design, methodologic quality, and other study characteristics were extracted. The primary outcome was the reporting of at least one statistically significant association between the exposure and a health-related outcome. Data were analyzed using logistic regression models. DATA SYNTHESIS: Of 59 studies, 12 (20%) were funded exclusively by the telecommunications industry, 11 (19%) were funded by public agencies or charities, 14 (24%) had mixed funding (including industry), and in 22 (37%) the source of funding was not reported. Studies funded exclusively by industry reported the largest number of outcomes, but were least likely to report a statistically significant result: The odds ratio was 0.11 (95% confidence interval, 0.02-0.78), compared with studies funded by public agencies or charities. This finding was not materially altered in analyses adjusted for the number of outcomes reported, study quality, and other factors. CONCLUSIONS: The interpretation of results from studies of health effects of radiofrequency radiation should take sponsorship into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much medical research is observational. The reporting of observational studies is often of insufficient quality. Poor reporting hampers the assessment of the strengths and weaknesses of a study and the generalisability of its results. Taking into account empirical evidence and theoretical considerations, a group of methodologists, researchers, and editors developed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) recommendations to improve the quality of reporting of observational studies. The STROBE Statement consists of a checklist of 22 items, which relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to cohort studies, case-control studies and cross-sectional studies and four are specific to each of the three study designs. The STROBE Statement provides guidance to authors about how to improve the reporting of observational studies and facilitates critical appraisal and interpretation of studies by reviewers, journal editors and readers. This explanatory and elaboration document is intended to enhance the use, understanding, and dissemination of the STROBE Statement. The meaning and rationale for each checklist item are presented. For each item, one or several published examples and, where possible, references to relevant empirical studies and methodological literature are provided. Examples of useful flow diagrams are also included. The STROBE Statement, this document, and the associated Web site (http://www.strobe-statement.org/) should be helpful resources to improve reporting of observational research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the Web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover 3 main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors, to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. Eighteen items are common to all 3 study designs and 4 are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available at http://www.annals.org and on the Web sites of PLoS Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Few data are available on the long-term immunologic response to antiretroviral therapy (ART) in resource-limited settings, where ART is being rapidly scaled up using a public health approach, with a limited repertoire of drugs. OBJECTIVES: To describe immunologic response to ART among ART patients in a network of cohorts from sub-Saharan Africa, Latin America, and Asia. STUDY POPULATION/METHODS: Treatment-naive patients aged 15 and older from 27 treatment programs were eligible. Multilevel, linear mixed models were used to assess associations between predictor variables and CD4 cell count trajectories following ART initiation. RESULTS: Of 29 175 patients initiating ART, 8933 (31%) were excluded due to insufficient follow-up time and early lost to follow-up or death. The remaining 19 967 patients contributed 39 200 person-years on ART and 71 067 CD4 cell count measurements. The median baseline CD4 cell count was 114 cells/microl, with 35% having less than 100 cells/microl. Substantial intersite variation in baseline CD4 cell count was observed (range 61-181 cells/microl). Women had higher median baseline CD4 cell counts than men (121 vs. 104 cells/microl). The median CD4 cell count increased from 114 cells/microl at ART initiation to 230 [interquartile range (IQR) 144-338] at 6 months, 263 (IQR 175-376) at 1 year, 336 (IQR 224-472) at 2 years, 372 (IQR 242-537) at 3 years, 377 (IQR 221-561) at 4 years, and 395 (IQR 240-592) at 5 years. In multivariable models, baseline CD4 cell count was the most important determinant of subsequent CD4 cell count trajectories. CONCLUSION: These data demonstrate robust and sustained CD4 response to ART among patients remaining on therapy. Public health and programmatic interventions leading to earlier HIV diagnosis and initiation of ART could substantially improve patient outcomes in resource-limited settings.