50 resultados para Homogeneous zones


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volcanic arcs above subduction zones are enriched in volatiles and fluid-mobile elements with respect to mid-oceanic ridge basalts. There is general consensus that this particular subduction zone signature is generated by fluid-induced extraction of these elements from subducted oceanic crust and its sedimentary cover. However, how these fluids are transferred through the mantle wedge to the locus of partial melting and what modification the fluids will experience is unresolved. Here we investigate the interaction of slab fluids with the mantle wedge through a series of high-pressure experiments. We explore two end-member processes of focused and porous reactive flow of hydrous slab melts through the mantle. Transfer by porous flow leads to the formation of hydrous minerals that sequester fluid-mobile elements and residual fluids characterized by trace element patterns inconsistent with typical arc lavas. In contrast, no hydrous minerals are formed in the reaction zone of experiments mimicking focused flow, and the typical trace element signature acquired during fluid extraction from the slab is preserved, indicating that this is an efficient process for element transfer through the mantle wedge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many countries treat income generated via exports favourably, especially when production takes places in special zones known as export processing zones (EPZs). EPZs can be defined as specific, geographically defined zones or areas that are subject to special administration and that generally offer tax incentives, such as duty‐free imports when producing for export, exemption from other regulatory constraints linked to import for the domestic market, sometimes favourable treatment in terms of industrial regulation, and the streamlining of border clearing procedures. We describe a database of WTO Members that employ special economic zones as part of their industrial policy mix. This is based on WTO notification and monitoring through the WTO’s trade policy review mechanism (TPRM), supplemented with information from the ILO, World Bank, and primary sources. We also provide some rough analysis of the relationship between use of EPZs and the carbon intensity of exports, and relative levels of investment across countries with and without special zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analogue model experiments using both brittle and viscous materials were performed to investigate the development and interaction of strike-slip faults in zones of distributed shear deformation. At low strain, bulk dextral shear deformation of an initial rectangular model is dominantly accommodated by left-stepping, en echelon strike-slip faults (Riedel shears, R) that form in response to the regional (bulk) stress field. Push-up zones form in the area of interaction between adjacent left-stepping Riedel shears. In cross sections, faults bounding push-up zones have an arcuate shape or merge at depth. Adjacent left-stepping R shears merge by sideways propagation or link by short synthetic shears that strike subparallel to the bulk shear direction. Coalescence of en echelon R shears results in major, through-going faults zones (master faults). Several parallel master faults develop due to the distributed nature of deformation. Spacing between master faults is related to the thickness of the brittle layers overlying the basal viscous layer. Master faults control to a large extent the subsequent fault pattern. With increasing strain, relatively short antithetic and synthetic faults develop mostly between old, but still active master faults. The orientation and evolution of the new faults indicate local modifications of the stress field. In experiments lacking lateral borders, closely spaced parallel antithetic faults (cross faults) define blocks that undergo clockwise rotation about a vertical axis with continuing deformation. Fault development and fault interaction at different stages of shear strain in our models show similarities with natural examples that have undergone distributed shear.