55 resultados para Highlands College
Resumo:
The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.
Resumo:
Research findings on how participation in social networking sites (SNSs) affects users’ subjective well-being are equivocal. Some studies suggest a positive impact of SNSs on users’ life satisfaction and mood, whereas others report undesirable consequences such as depressive symptoms and anxiety. However, whereas the factors behind the positive effects have received significant scholarly attention, little is known about the mechanisms that underlie the unfavorable consequences. To fill this gap, this study uses social comparison theory and the responses of 1,193 college-age Facebook users to investigate the role of envy in the SNS context as a potential contributor to those undesirable outcomes. Arising in response to social information consumption, envy is shown to be associated with reduced cognitive and affective well-being as well as increased reactive self-enhancement. These preliminary findings contribute to the growing body of information systems research investigating the dysfunctional consequences of information technology adoption in general and social media participation in particular.
Resumo:
Soil degradation is widespread in the Ethiopian Highlands. Its negative impacts on soil productivity contribute to the extreme poverty of the rural population. Soil conservation is propagated as a means of reducing soil erosion, however, it is a costly investment for small-scale farming households. The present study is an attempt to show whether or not selected mechanical Soil and Water Conservation (SWC) technologies are profitable from a farmer’s point of view. A financial Cost-Benefit Analysis (CBA) is carried out to assess whether or not the considered SWC technologies are profitable from a farmer’s point of view. The CBA is supplemented by an evaluation of aspects from the economic and institutional environment. Whether or not soil conservation is profitable from a farmer’s point of view depends on a broad range of factors from the ecological, economic, political, institutional and socio-cultural sphere and also depends on the technology and the prevailing farming system. Because these factors are closely interlinked, it is often not sufficient to change or influence one to make SWC profitable. Several recommendations are formulated with regard to improving the profitability of SWC investments from a farmer’s point of view. Because the reasons for unsustainable resource use are manifold and highly interlinked, only a multi-stakeholder, multi-level and multi-objective approach is likely to offer solutions that address the underlying problems adequately.
Resumo:
A study was conducted on the highlands of Ethiopia to identify and analyse the factors determining the adoption of environmental management measures. In 1985, Ethiopia was classified into low –and high-potential areas based on the suitability of the natural environment for rain-fed agriculture. To address these objectives, case study areas were selected from low-potential and high-potential areas randomly. Data were collected through face-to-face interview and key informants, focus group discussion and field observation. In the low-potential areas, the physical environment ‒ particularly soil and forest environments have shown substantial recovery. Similarly, the water environment has improved. However, in the high-potential areas sampled, these resources are still being degraded. Clear understanding of the benefits of soil conservation structures by farmers, active involvement and technical support from the government and full and genuine participation of farmers in communal environmental resources management activities were found to be main factors in the adoption of environmental management measures.
Resumo:
Accurate rainfall data are the key input parameter for modelling river discharge and soil loss. Remote areas of Ethiopia often lack adequate precipitation data and where these data are available, there might be substantial temporal or spatial gaps. To counter this challenge, the Climate Forecast System Reanalysis (CFSR) of the National Centers for Environmental Prediction (NCEP) readily provides weather data for any geographic location on earth between 1979 and 2014. This study assesses the applicability of CFSR weather data to three watersheds in the Blue Nile Basin in Ethiopia. To this end, the Soil and Water Assessment Tool (SWAT) was set up to simulate discharge and soil loss, using CFSR and conventional weather data, in three small-scale watersheds ranging from 112 to 477 ha. Calibrated simulation results were compared to observed river discharge and observed soil loss over a period of 32 years. The conventional weather data resulted in very good discharge outputs for all three watersheds, while the CFSR weather data resulted in unsatisfactory discharge outputs for all of the three gauging stations. Soil loss simulation with conventional weather inputs yielded satisfactory outputs for two of three watersheds, while the CFSR weather input resulted in three unsatisfactory results. Overall, the simulations with the conventional data resulted in far better results for discharge and soil loss than simulations with CFSR data. The simulations with CFSR data were unable to adequately represent the specific regional climate for the three watersheds, performing even worse in climatic areas with two rainy seasons. Hence, CFSR data should not be used lightly in remote areas with no conventional weather data where no prior analysis is possible.