91 resultados para Hierarchical regression.
Resumo:
This paper introduces and analyzes a stochastic search method for parameter estimation in linear regression models in the spirit of Beran and Millar [Ann. Statist. 15(3) (1987) 1131–1154]. The idea is to generate a random finite subset of a parameter space which will automatically contain points which are very close to an unknown true parameter. The motivation for this procedure comes from recent work of Dümbgen et al. [Ann. Statist. 39(2) (2011) 702–730] on regression models with log-concave error distributions.
Resumo:
Abstract Purpose: There is evidence that depressed mood and perception of pain are related in patients with chronic illness. However, how individual resources such as self-efficacy and social support play a role in this association remains unclear. The aim of this study was to investigate the influence of both variables as either moderator or mediator. Method: In a longitudinal study, 274 injured workers (M = 43.24 years) were investigated. Data were collected on sociodemographics, depressed mood, pain, social support, and self-efficacy at three months post-injury, and depressed mood one year post-injury. Results: Hierarchical multiple linear regression analyses revealed that pain (β = 0.14; p < 0.01) and social support (β = -0.18; p < 0.001) were significant predictors of depressed mood. Self-efficacy moderated the relationship of pain (β = -0.12; p < 0.05) and depressed mood after one year. Lower self-efficacy in combination with pain had a stronger impact than higher self-efficacy and pain on depressed mood. Social support did not moderate the association. Conclusions: Self-efficacy for managing pain is important in the development of depressed mood. According to the results of this study, we suggest that the detection of low social support and low self-efficacy might be important in long-term rehabilitation process. Implications for Rehabilitation Risk for depressed mood one year after an accident is high: One in five workers report depressed mood. Protective factors for depressed mood in injured workers needs to be considered in the rehabilitation. Focusing on resources like social support and self-efficacy could be protective against depressed mood. The early detection of low social support and low self-efficacy might be important in long-term rehabilitation processes
Resumo:
AIMS:Duchenne muscular dystrophy (DMD) is a muscle disease with serious cardiac complications. Changes in Ca(2+) homeostasis and oxidative stress were recently associated with cardiac deterioration, but the cellular pathophysiological mechanisms remain elusive. We investigated whether the activity of ryanodine receptor (RyR) Ca(2+) release channels is affected, whether changes in function are cause or consequence and which post-translational modifications drive disease progression. METHODS AND RESULTS:Electrophysiological, imaging, and biochemical techniques were used to study RyRs in cardiomyocytes from mdx mice, an animal model of DMD. Young mdx mice show no changes in cardiac performance, but do so after ∼8 months. Nevertheless, myocytes from mdx pups exhibited exaggerated Ca(2+) responses to mechanical stress and 'hypersensitive' excitation-contraction coupling, hallmarks of increased RyR Ca(2+) sensitivity. Both were normalized by antioxidants, inhibitors of NAD(P)H oxidase and CaMKII, but not by NO synthases and PKA antagonists. Sarcoplasmic reticulum Ca(2+) load and leak were unchanged in young mdx mice. However, by the age of 4-5 months and in senescence, leak was increased and load was reduced, indicating disease progression. By this age, all pharmacological interventions listed above normalized Ca(2+) signals and corrected changes in ECC, Ca(2+) load, and leak. CONCLUSION:Our findings suggest that increased RyR Ca(2+) sensitivity precedes and presumably drives the progression of dystrophic cardiomyopathy, with oxidative stress initiating its development. RyR oxidation followed by phosphorylation, first by CaMKII and later by PKA, synergistically contributes to cardiac deterioration.
Resumo:
Multimodal therapy concepts have been successfully implemented in the treatment of locally advanced gastrointestinal malignancies. The effects of neoadjuvant chemo- or radiochemotherapy such as scarry fibrosis or resorptive changes and inflammation can be determined by histopathological investigation of the subsequent resection specimen. Tumor regression grading (TRG) systems which aim to categorize the amount of regressive changes after cytotoxic treatment mostly refer onto the amount of therapy induced fibrosis in relation to residual tumor or the estimated percentage of residual tumor in relation to the previous tumor site. Commonly used TRGs for upper gastrointestinal carcinomas are the Mandard grading and the Becker grading system, e.g., and for rectal cancer the Dworak or the Rödel grading system, or other systems which follow similar definitions. Namely for gastro-esophageal carcinomas these TRGs provide important prognostic information since complete or subtotal tumor regression has shown to be associated with better patient's outcome. The prognostic value of TRG may even exceed those of currently used staging systems (e.g., TNM staging) for tumors treated by neoadjuvant therapy. There have been some limitations described regarding interobserver variability especially in borderline cases, which may be improved by standardization of work up of resection specimen and better training of histopathologic determination of regressive changes. It is highly recommended that TRG should be implemented in every histopathological report of neoadjuvant treated gastrointestinal carcinomas. The aim of this review is to disclose the relevance of histomorphological TRG to accomplish an optimal therapy for patients with gastrointestinal carcinomas.
Resumo:
Histopathologic tumor regression grades (TRGs) after neoadjuvant chemotherapy predict survival in different cancers. In bladder cancer, corresponding studies have not been conducted. Fifty-six patients with advanced invasive urothelial bladder cancer received neoadjuvant chemotherapy before cystectomy and lymphadenectomy. TRGs were defined as follows: TRG1: complete tumor regression; TRG2: >50% tumor regression; TRG3: 50% or less tumor regression. Separate TRGs were assigned for primary tumors and corresponding lymph nodes. The prognostic impact of these 2 TRGs, the highest (dominant) TRG per patient, and competing tumor features reflecting tumor regression (ypT/ypN stage, maximum diameter of the residual tumor) were determined. Tumor characteristics in initial transurethral resection of the bladder specimens were tested for response prediction. The frequency of TRGs 1, 2, and 3 in the primary tumors were n=16, n=19, and n=21; corresponding data from the lymph nodes were n=31, n=9, and n=16. Interobserver agreement in determination of the TRG was strong (κ=0.8). Univariately, all evaluated parameters were significantly (P≤0.001) related to overall survival; however, the segregation of the Kaplan-Meier curves was best for the dominant TRG. In multivariate analysis, only dominant TRG predicted overall survival independently (P=0.035). In transurethral resection specimens of the chemotherapy-naive bladder cancer, the only tumor feature with significant (P<0.03) predictive value for therapy response was a high proliferation rate. In conclusion, among all parameters reflecting tumor regression, the dominant TRG was the only independent risk factor. A favorable chemotherapy response is associated with a high proliferation rate in the initial chemotherapy-naive bladder cancer. This feature might help personalize neoadjuvant chemotherapy.
Resumo:
BACKGROUND Follicular variant of papillary thyroid carcinoma (FVPTC) shares features of papillary (PTC) and follicular (FTC) thyroid carcinomas on a clinical, morphological, and genetic level. MicroRNA (miRNA) deregulation was extensively studied in PTCs and FTCs. However, very limited information is available for FVPTC. The aim of this study was to assess miRNA expression in FVPTC with the most comprehensive miRNA array panel and to correlate it with the clinicopathological data. METHODS Forty-four papillary thyroid carcinomas (17 FVPTC, 27 classic PTC) and eight normal thyroid tissue samples were analyzed for expression of 748 miRNAs using Human Microarray Assays on the ABI 7900 platform (Life Technologies, Carlsbad, CA). In addition, an independent set of 61 tumor and normal samples was studied for expression of novel miRNA markers detected in this study. RESULTS Overall, the miRNA expression profile demonstrated similar trends between FVPTC and classic PTC. Fourteen miRNAs were deregulated in FVPTC with a fold change of more than five (up/down), including miRNAs known to be upregulated in PTC (miR-146b-3p, -146-5p, -221, -222 and miR-222-5p) and novel miRNAs (miR-375, -551b, 181-2-3p, 99b-3p). However, the levels of miRNA expression were different between these tumor types and some miRNAs were uniquely dysregulated in FVPTC allowing separation of these tumors on the unsupervised hierarchical clustering analysis. Upregulation of novel miR-375 was confirmed in a large independent set of follicular cell derived neoplasms and benign nodules and demonstrated specific upregulation for PTC. Two miRNAs (miR-181a-2-3p, miR-99b-3p) were associated with an adverse outcome in FVPTC patients by a Kaplan-Meier (p < 0.05) and multivariate Cox regression analysis (p < 0.05). CONCLUSIONS Despite high similarity in miRNA expression between FVPTC and classic PTC, several miRNAs were uniquely expressed in each tumor type, supporting their histopathologic differences. Highly upregulated miRNA identified in this study (miR-375) can serve as a novel marker of papillary thyroid carcinoma, and miR-181a-2-3p and miR-99b-3p can predict relapse-free survival in patients with FVPTC thus potentially providing important diagnostic and predictive value.
Resumo:
Information theory-based metric such as mutual information (MI) is widely used as similarity measurement for multimodal registration. Nevertheless, this metric may lead to matching ambiguity for non-rigid registration. Moreover, maximization of MI alone does not necessarily produce an optimal solution. In this paper, we propose a segmentation-assisted similarity metric based on point-wise mutual information (PMI). This similarity metric, termed SPMI, enhances the registration accuracy by considering tissue classification probabilities as prior information, which is generated from an expectation maximization (EM) algorithm. Diffeomorphic demons is then adopted as the registration model and is optimized in a hierarchical framework (H-SPMI) based on different levels of anatomical structure as prior knowledge. The proposed method is evaluated using Brainweb synthetic data and clinical fMRI images. Both qualitative and quantitative assessment were performed as well as a sensitivity analysis to the segmentation error. Compared to the pure intensity-based approaches which only maximize mutual information, we show that the proposed algorithm provides significantly better accuracy on both synthetic and clinical data.
Resumo:
This paper studied two different regression techniques for pelvic shape prediction, i.e., the partial least square regression (PLSR) and the principal component regression (PCR). Three different predictors such as surface landmarks, morphological parameters, or surface models of neighboring structures were used in a cross-validation study to predict the pelvic shape. Results obtained from applying these two different regression techniques were compared to the population mean model. In almost all the prediction experiments, both regression techniques unanimously generated better results than the population mean model, while the difference on prediction accuracy between these two regression methods is not statistically significant (α=0.01).
Resumo:
Reconstruction of shape and intensity from 2D x-ray images has drawn more and more attentions. Previously introduced work suffers from the long computing time due to its iterative optimization characteristics and the requirement of generating digitally reconstructed radiographs within each iteration. In this paper, we propose a novel method which uses a patient-specific 3D surface model reconstructed from 2D x-ray images as a surrogate to get a patient-specific volumetric intensity reconstruction via partial least squares regression. No DRR generation is needed. The method was validated on 20 cadaveric proximal femurs by performing a leave-one-out study. Qualitative and quantitative results demonstrated the efficacy of the present method. Compared to the existing work, the present method has the advantage of much shorter computing time and can be applied to both DXA images as well as conventional x-ray images, which may hold the potentials to be applied to clinical routine task such as total hip arthroplasty (THA).
Resumo:
Objective: To examine aptitude–treatment interaction (ATI) effects in cancer patients receiving psychoonco- logical interventions (POIs). Method: N=36 cancer patients were treated with POI. Hierarchical linear regression was used to test two interaction effects between patient baseline characteristics (aptitudes) and process analyses of therapy sessions (treatment) on change in mental health during POI. Results: Patients with high emotional distress did best when their therapy reduced arousal, and patients with lower emotional distress benefited most if therapists emphasized arousal induction. The interaction between the coping style of the patient (internalizing vs. externalizing) and the focus of the treatment (emotion vs. behavior) did not predict POI outcomes. Conclusions: The ATI effect of patient's distress and therapist's arousal induction/reduction may help therapists to make differential treatment decisions in POI. Tailoring treatments to cancer patients based on their personal characteristics may enhance the effectiveness of POI.
Resumo:
Graphical presentation of regression results has become increasingly popular in the scientific literature, as graphs are much easier to read than tables in many cases. In Stata such plots can be produced by the -marginsplot- command. However, while -marginsplot- is very versatile and flexible, it has two major limitations: it can only process results left behind by -margins- and it can only handle one set of results at the time. In this article I introduce a new command called -coefplot- that overcomes these limitations. It plots results from any estimation command and combines results from several models into a single graph. The default behavior of -coefplot- is to plot markers for coefficients and horizontal spikes for confidence intervals. However, -coefplot- can also produce various other types of graphs. The capabilities of -coefplot- are illustrated in this article using a series of examples.