87 resultados para Gut peptides
Resumo:
Microcirculatory dysfunction contributes significantly to tissue hypoxia and multiple organ failure in sepsis. Ischemia of the gut and intestinal hypoxia are especially relevant for the evolution of sepsis because the mucosal barrier function may be impaired, leading to translocation of bacteria and toxins. Because sympathetic blockade enhances intestinal perfusion under physiologic conditions, we hypothesized that thoracic epidural anesthesia (TEA) may attenuate microcirculatory perturbations during sepsis. The present study was designed as a prospective and controlled laboratory experiment to assess the effects of continuous TEA on the mucosal microcirculation in a cecal ligation and perforation model of sepsis in rats. Anesthetized Sprague-Dawley rats underwent laparotomy and cecal ligation and perforation to induce sepsis. Subsequently, either bupivacaine 0.125% (n = 10) or isotonic sodium chloride solution (n = 9) was continuously infused via the thoracic epidural catheter for 24 h. In addition, a sham laparotomy was carried out in eight animals. Intravital videomicroscopy was then performed on six to ten villi of ileum mucosa. The capillary density was measured as areas encircled by perfused capillaries, that is, intercapillary areas. The TEA accomplished recruitment of microcirculatory units in the intestinal mucosa by decreasing total intercapillary areas (1,317 +/- 403 vs. 1,001 +/- 236 microm2) and continuously perfused intercapillary areas (1,937 +/- 512 vs. 1,311 +/- 678 microm2, each P < 0.05). Notably, TEA did not impair systemic hemodynamic variables beyond the changes caused by sepsis itself. Therefore, sympathetic blockade may represent a therapeutic option to treat impaired microcirculation in the gut mucosa resulting from sepsis. Additional studies are warranted to assess the microcirculatory effects of sympathetic blockade on other splanchnic organs in systemic inflammation.
Resumo:
Despite the improvements in cancer therapy during the past years, high-grade gliomas and many other types of cancer are still extremely resistant to current forms of therapy. Boron neutron capture therapy (BNCT) provides a promising way to destroy cancer cells without damaging healthy tissue. However, BNCT in practice is still limited due to the lack of boron-containing compounds that selectively deliver boron to cancer cells. Since many neuroendocrine tumors show an overexpression of the somatostatin receptor, it was our aim to synthesize compounds that contain a large number of boron atoms and still show high affinity toward this transmembrane receptor. The synthetic peptide Tyr (3)-octreotate (TATE) was chosen as a high-affinity and internalizing tumor targeting vector (TTV). Novel boron cluster compounds, containing 10 or 20 boron atoms, were coupled to the N-terminus of TATE. The obtained affinity data demonstrate that the use of a spacer between TATE and the closo-borane moiety is the option to avoid a loss of biological affinity of closo-borane conjugated TATE. For the first time, it was shown that closo-borane conjugated regulatory peptides retain high biological affinity and selectivity toward their transmembrane tumor receptors. The results obtained and the improvement of spacer and boron building block chemistry may stimulate new directions for BNCT.
Gastropod Seed Dispersal: An Invasive Slug Destroys Far More Seeds in Its Gut than Native Gastropods
Resumo:
Seed dispersal is one of the most important mechanisms shaping biodiversity, and animals are one of the key dispersal vectors. Animal seed dispersal can directly or indirectly be altered by invasive organisms through the establishment of new or the disruption of existing seed dispersal interactions. So far it is known for a few gastropod species that they ingest and defecate viable plant seeds and consequently act as seed dispersers, referred to as gastropodochory. In a multi-species experiment, consisting of five different plant species and four different gastropod species, we tested with a fully crossed design whether gastropodochory is a general mechanism across native gastropod species, and whether it is altered by the invasive alien slug species Arion lusitanicus. Specifically, we hypothesized that a) native gastropod species consume the seeds from all tested plant species in equal numbers (have no preference), b) the voracious invasive alien slug A. lusitanicus – similarly to its herbivore behaviour – consumes a higher amount of seeds than native gastropods, and that c) seed viability is equal among different gastropod species after gut passage. As expected all tested gastropod species consumed all tested plant species. Against our expectation there was a difference in the amount of consumed seeds, with the largest and native mollusk Helix pomatia consuming most seeds, followed by the invasive slug and the other gastropods. Seed damage and germination rates did not differ after gut passage through different native species, but seed damage was significantly higher after gut passage through the invasive slug A. lusitanicus, and their germination rates were significantly reduced.
Resumo:
Synthetic peptides containing a repetitive hexapeptide sequence (Ala-His-His-Ala-Ala-Asp) of malarial histidine-rich protein II were evaluated for binding with haem in vitro. The pattern of haem binding suggested that each repeat unit of this sequence provides one binding site for haem. Chloroquine inhibited the haem-peptide complex formation with preferential formation of a haem chloroquine complex. In vitro studies on haem polymerisation showed that none of the peptides could initiate haemozoin formation. However, they could inhibit haemozoin formation promoted by a malarial parasite extract, possibly by competitively binding free haem. These results indicate this hexapeptide sequence represents the haem binding site of the malarial histidine-rich protein and possibly the site of nucleation for haem polymerisation.
Resumo:
Fatalities from schistosome infections arise due to granulomatous, immune-mediated responses to eggs that become trapped in host tissues. Schistosome-specific immune responses are characterized by initial Th1 responses and our previous studies demonstrated that Myd88-deficient mice failed to initiate such responses in vivo. Paradoxically, schistosomal antigens fail to stimulate innate cells to release pro-inflammatory cytokines in vitro. Since S. mansoni infection is an intestinal disease, we hypothesized that commensal bacteria could act as bystander activators of the intestinal innate immune system to instigate Th1 responses. Using a broad spectrum of orally-administered antibiotics and antimycotics we analyzed schistosome-infected mice that were simultaneously depleted of gut bacteria. After depletion there was significantly less inflammation in the intestine which was accompanied by decreased intestinal granuloma development. In contrast, liver pathology remained unaltered. In addition, schistosome-specific immune responses were skewed and fecal egg excretion was diminished. This study demonstrates that host microbiota can act as a third partner in instigating helminth-specific immune responses.