50 resultados para Giles, Buck


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Nicotine addiction is a major public health problem and is associated with primary glutamatergic dysfunction. We recently showed marked global reductions in metabotropic glutamate receptor type 5 (mGluR5) binding in smokers and recent ex-smokers (average abstinence duration of 25 weeks). The goal of this study was to examine the role of mGluR5 downregulation in nicotine addiction by investigating a group of long-term ex-smokers (abstinence >1.5 years), and to explore associations between mGluR5 binding and relapse in recent ex-smokers. METHODS Images of mGluR5 receptor binding were acquired in 14 long-term ex-smokers, using positron emission tomography with radiolabeled [11C]ABP688, which binds to an allosteric site with high specificity. RESULTS Long-term ex-smokers and individuals who had never smoked showed no differences in mGluR5 binding in any of the brain regions examined. Long-term ex-smokers showed significantly higher mGluR5 binding than recent ex-smokers, most prominently in the frontal cortex (42%) and thalamus (57%). CONCLUSIONS Our findings suggest that downregulation of mGluR5 is a pathogenetic mechanism underlying nicotine dependence and the high relapse rate in individuals previously exposed to nicotine. Therefore, mGluR5 receptor binding appears to be an effective biomarker in smoking and a promising target for the discovery of novel medication for nicotine dependence and other substance-related disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the first analytical approach to demonstrate the in situ imaging of metabolites from formalin-fixed, paraffin-embedded (FFPE) human tissue samples. Using high-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FT-ICR MSI), we conducted a proof-of-principle experiment comparing metabolite measurements from FFPE and fresh frozen tissue sections, and found an overlap of 72% amongst 1700 m/z species. In particular, we observed conservation of biomedically relevant information at the metabolite level in FFPE tissues. In biomedical applications, we analysed tissues from 350 different cancer patients and were able to discriminate between normal and tumour tissues, and different tumours from the same organ, and found an independent prognostic factor for patient survival. This study demonstrates the ability to measure metabolites in FFPE tissues using MALDI-FT-ICR MSI, which can then be assigned to histology and clinical parameters. Our approach is a major technical, histochemical, and clinicopathological advance that highlights the potential for investigating diseases in archived FFPE tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subcortical volumetric brain abnormalities have been observed in mood disorders. However, it is unknown whether these reflect adverse effects predisposing to mood disorders or emerge at illness onset. Magnetic resonance imaging was conducted at baseline and after two years in 111 initially unaffected young adults at increased risk of mood disorders because of a close family history of bipolar disorder and 93 healthy controls (HC). During the follow-up, 20 high-risk subjects developed major depressive disorder (HR-MDD), with the others remaining well (HR-well). Volumes of the lateral ventricles, caudate, putamen, pallidum, thalamus, hippocampus and amygdala were extracted for each hemisphere. Using linear mixed-effects models, differences and longitudinal changes in subcortical volumes were investigated between groups (HC, HR-MDD, HR-well). There were no significant differences for any subcortical volume between groups controlling for multiple testing. Additionally, no significant differences emerged between groups over time. Our results indicate that volumetric subcortical brain abnormalities of these regions using the current method appear not to form familial trait markers for vulnerability to mood disorders in close relatives of bipolar disorder patients over the two-year time period studied. Moreover, they do not appear to reduce in response to illness onset at least for the time period studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis.