53 resultados para Genetic-evidence
Resumo:
Puumala virus (PUUV) causes mild to moderate cases of haemorrhagic fever with renal syndrome (HFRS), and is responsible for the majority of hantavirus infections of humans in Fennoscandia, Central and Western Europe. Although there are relatively many PUUV sequences available from different European countries, little is known about the presence of this virus in Poland. During population studies in 2009 a total of 45 bank voles were trapped at three sites in north-eastern Poland, namely islands on Dejguny and Dobskie Lakes and in a forest near Mikołajki. S and M segment-specific RT-PCR assays detected PUUV RNA in three animals from the Mikołajki site. The obtained partial S and M segment sequences demonstrated the highest similarity to the corresponding segments of a PUUV strain from Latvia. Analysis of chest cavity fluid samples by IgG ELISA using a yeast-expressed PUUV nucleocapsid protein resulted in the detection of two seropositive samples, both being also RT-PCR positive. Interestingly, at the trapping site in Mikołajki PUUV-positive bank voles belong to the Carpathian and Eastern genetic lineages within this species. In conclusion, we herein present the first molecular evidence for PUUV in the rodent reservoir from Poland.
Resumo:
AIM To identify novel variants associated with anthracycline-induced cardiotoxicity and to assess these in a genotype-guided risk prediction model. PATIENTS & METHODS Two cohorts treated for childhood cancer (n = 344 and 218, respectively) were genotyped for 4578 SNPs in drug ADME and toxicity genes. RESULTS Significant associations were identified in SLC22A17 (rs4982753; p = 0.0078) and SLC22A7 (rs4149178; p = 0.0034), with replication in the second cohort (p = 0.0071 and 0.047, respectively). Additional evidence was found for SULT2B1 and several genes related to oxidative stress. Adding the SLC22 variants to the prediction model improved its discriminative ability (AUC 0.78 vs 0.75 [p = 0.029]). CONCLUSION Two novel variants in SLC22A17 and SLC22A7 were significantly associated with anthracycline-induced cardiotoxicity and improved a genotype-guided risk prediction model, which could improve patient risk stratification.
Resumo:
Yakutia, Sakha Republic, in the Siberian Far East, represents one of the coldest places on Earth, with winter record temperatures dropping below -70 °C. Nevertheless, Yakutian horses survive all year round in the open air due to striking phenotypic adaptations, including compact body conformations, extremely hairy winter coats, and acute seasonal differences in metabolic activities. The evolutionary origins of Yakutian horses and the genetic basis of their adaptations remain, however, contentious. Here, we present the complete genomes of nine present-day Yakutian horses and two ancient specimens dating from the early 19th century and ∼5,200 y ago. By comparing these genomes with the genomes of two Late Pleistocene, 27 domesticated, and three wild Przewalski's horses, we find that contemporary Yakutian horses do not descend from the native horses that populated the region until the mid-Holocene, but were most likely introduced following the migration of the Yakut people a few centuries ago. Thus, they represent one of the fastest cases of adaptation to the extreme temperatures of the Arctic. We find cis-regulatory mutations to have contributed more than nonsynonymous changes to their adaptation, likely due to the comparatively limited standing variation within gene bodies at the time the population was founded. Genes involved in hair development, body size, and metabolic and hormone signaling pathways represent an essential part of the Yakutian horse adaptive genetic toolkit. Finally, we find evidence for convergent evolution with native human populations and woolly mammoths, suggesting that only a few evolutionary strategies are compatible with survival in extremely cold environments.
Resumo:
Most previous attempts at reconstructing the past history of human populations did not explicitly take geography into account, or considered very simple scenarios of migration and ignored environmental information. However, it is likely that the Last Glacial Maximum (LGM) affected the demography and the range of many species, including our own. Moreover, long-distance dispersal (LDD) may have been an important component of human migrations, allowing fast colonization of new territories and preserving high levels of genetic diversity. Here, we use a high-quality microsatellite dataset genotyped in 22 populations to estimate the posterior probabilities of several scenarios for the settlement of the Old World by modern humans. We considered models ranging from a simple spatial expansion to others including LDD and a LGM-induced range contraction, as well as Neolithic demographic expansions. We find that scenarios with LDD are much better supported by data than models without LDD. Nevertheless, we show evidence that LDD events to empty habitats were strongly prevented during the settlement of Eurasia. This unexpected absence of LDD ahead of the colonization wave front could have been caused by an Allee effect, either due to intrinsic causes such as an inbreeding depression built during the expansion, or to extrinsic causes such as direct competition with archaic humans. Overall, our results suggest only a relatively limited effect of the LGM-contraction on current patterns of human diversity. This is in clear contrast with the major role of LDD migrations, which have potentially contributed to the intermingled genetic structure of Eurasian populations.
Resumo:
Differences in how organisms modify their environment can evolve rapidly and might influence adaptive population divergence [1, 2]. In a common garden experiment in aquatic mesocosms, we found that adult stickleback from a recently diverged pair of lake and stream populations had contrasting effects on ecosystem metrics. These modifications were caused by both genetic and plastic differences between populations and were sometimes comparable in magnitude to those caused by the presence/ absence of stickleback. Lake and streamfish differentially affected the biomass of zooplankton and phytoplankton, the concentration of phosphorus, and the abundance of several prey (e.g., copepods) and non-prey (e.g., cyanobacteria) species. The adult mediated effects on mesocosm ecosystems influenced the survival and growth of a subsequent generation of juvenile stickleback reared in the same mesocosms. The prior presence of adults decreased the overall growth rate of juveniles, and the prior presence of stream adults lowered overall juvenile survival. Among the survivors, lake juveniles grew faster than co-occurring stream juveniles, except in mesocosm ecosystems previously modified by adult lake fish that were reared on plankton. Overall, our results provide evidence for reciprocal interactions between ecosystem dynamics and evolutionary change (i.e., eco-evolutionary feedbacks) in the early stages of adaptive population divergence.
Resumo:
Gene flow is usually thought to reduce genetic divergence and impede local adaptation by homogenising gene pools between populations. However, evidence for local adaptation and phenotypic differentiation in highly mobile species, experiencing high levels of gene flow, is emerging. Assessing population genetic structure at different spatial scales is thus a crucial step towards understanding mechanisms underlying intraspecific differentiation and diversification. Here, we studied the population genetic structure of a highly mobile species – the great tit Parus major – at different spatial scales. We analysed 884 individuals from 30 sites across Europe including 10 close-by sites (< 50 km), using 22 microsatellite markers. Overall we found a low but significant genetic differentiation among sites (FST = 0.008). Genetic differentiation was higher, and genetic diversity lower, in south-western Europe. These regional differences were statistically best explained by winter temperature. Overall, our results suggest that great tits form a single patchy metapopulation across Europe, in which genetic differentiation is independent of geographical distance and gene flow may be regulated by environmental factors via movements related to winter severity. This might have important implications for the evolutionary trajectories of sub-populations, especially in the context of climate change, and calls for future investigations of local differences in costs and benefits of philopatry at large scales.
Resumo:
AIM Anthracycline-induced cardiotoxicity (ACT) occurs in 57% of treated patients and remains an important limitation of anthracycline-based chemotherapy. In various genetic association studies, potential genetic risk markers for ACT have been identified. Therefore, we developed evidence-based clinical practice recommendations for pharmacogenomic testing to further individualize therapy based on ACT risk. METHODS We followed a standard guideline development process; including a systematic literature search, evidence synthesis and critical appraisal, and the development of clinical practice recommendations with an international expert group. RESULTS RARG rs2229774, SLC28A3 rs7853758 and UGT1A6 rs17863783 variants currently have the strongest and the most consistent evidence for association with ACT. Genetic variants in ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3, RAC2, NCF4, CYBA, GSTP1, CAT, SULT2B1, POR, HAS3, SLC22A7, SCL22A17, HFE and NOS3 have also been associated with ACT, but require additional validation. We recommend pharmacogenomic testing for the RARG rs2229774 (S427L), SLC28A3 rs7853758 (L461L) and UGT1A6*4 rs17863783 (V209V) variants in childhood cancer patients with an indication for doxorubicin or daunorubicin therapy (Level B - moderate). Based on an overall risk stratification, taking into account genetic and clinical risk factors, we recommend a number of management options including increased frequency of echocardiogram monitoring, follow-up, as well as therapeutic options within the current standard of clinical practice. CONCLUSIONS Existing evidence demonstrates that genetic factors have the potential to improve the discrimination between individuals at higher and lower risk of ACT. Genetic testing may therefore support both patient care decisions and evidence development for an improved prevention of ACT.
Resumo:
The prevailing view of the nuclear genetic code is that it is largely frozen and unambiguous. Flexibility in the nuclear genetic code has been demonstrated in ciliates that reassign standard stop codons to amino acids, resulting in seven variant genetic codes, including three previously undescribed ones reported here. Surprisingly, in two of these species, we find efficient translation of all 64 codons as standard amino acids and recognition of either one or all three stop codons. How, therefore, does the translation machinery interpret a “stop” codon? We provide evidence, based on ribosomal profiling and “stop” codon depletion shortly before coding sequence ends, that mRNA 3′ ends may contribute to distinguishing stop from sense in a context-dependent manner. We further propose that such context-dependent termination/readthrough suppression near transcript ends enables genetic code evolution.