69 resultados para Genetic medicine


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Rare diseases in livestock animals are traditionally poorly diagnosed. Other than clinical description and pathological examination, the underlying causes have, for the most part, remained unknown. A single case of congenital skin fragility in cattle was observed, necropsy, histological and ultrastructural examinations were carried out and whole genome sequencing was utilized to identify the causative mutation. RESULTS A single purebred female Charolais calf with severe skin lesions was delivered full-term and died spontaneously after birth. The clinical and pathological findings exactly matched the gross description given by previous reports on epitheliogenesis imperfecta and epidermolysis bullosa (EB) in cattle. Histological and ultrastructural changes were consistent with EB junctionalis (EBJ). Genetic analysis revealed a previously unpublished ITGB4 loss-of-function mutation; the affected calf was homozygous for a 4.4 kb deletion involving exons 17 to 22, and the dam carried a single copy of the deletion indicating recessive inheritance. The homozygous mutant genotype did not occur in healthy controls of various breeds but some heterozygous carriers were found among Charolais cattle belonging to the affected herd. The mutant allele was absent in a representative sample of unrelated sires of the German Charolais population. CONCLUSION This is the first time in which a recessively inherited ITGB4 associated EBJ has been reported in cattle. The identification of heterozygous carriers is of importance in avoiding the transmission of this defect in future. Current DNA sequencing methods offer a powerful tool for understanding the genetic background of rare diseases in domestic animals having a reference genome sequence available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The success rate in the development of psychopharmacological compounds is insufficient. Two main reasons for failure have been frequently identified: 1) treating the wrong patients and 2) using the wrong dose. This is potentially based on the known heterogeneity among patients, both on a syndromal and a biological level. A focus on personalized medicine through better characterization with biomarkers has been successful in other therapeutic areas. Nevertheless, obstacles toward this goal that exist are 1) the perception of a lack of validation, 2) the perception of an expensive and complicated enterprise, and 3) the perception of regulatory hurdles. The authors tackle these concerns and focus on the utilization of biomarkers as predictive markers for treatment outcome. The authors primarily cover examples from the areas of major depression and schizophrenia. Methodologies covered include salivary and plasma collection of neuroendocrine, metabolic, and inflammatory markers, which identified subgroups of patients in the Netherlands Study of Depression and Anxiety. A battery of vegetative markers, including sleep-electroencephalography parameters, heart rate variability, and bedside functional tests, can be utilized to characterize the activity of a functional system that is related to treatment refractoriness in depression (e.g., the renin-angiotensin-aldosterone system). Actigraphy and skin conductance can be utilized to classify patients with schizophrenia and provide objective readouts for vegetative activation as a functional marker of target engagement. Genetic markers, related to folate metabolism, or folate itself, has prognostic value for the treatment response in patients with schizophrenia. Already, several biomarkers are routinely collected in standard clinical trials (e.g., blood pressure and plasma electrolytes), and appear to be differentiating factors for treatment outcome. Given the availability of a wide variety of markers, the further development and integration of such markers into clinical research is both required and feasible in order to meet the benefit of personalized medicine. This article is based on proceedings from the "Taking Personalized Medicine Seriously-Biomarker Approaches in Phase IIb/III Studies in Major Depression and Schizophrenia" session, which was held during the 10th Annual Scientific Meeting of the International Society for Clinical Trials Meeting (ISCTM) in Washington, DC, February 18 to 20, 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of naturally occurring human α1a-Adrenergic Receptor (α1aAR) genetic variants associated with cardiovascular disorders is poorly understood. Here, we present the novel findings that expression of human α1aAR-247R (247R) genetic variant in cardiomyoblasts leads to transition of cardiomyoblasts into a fibroblast-like phenotype, evidenced by morphology and distinct de novo expression of characteristic genes. These fibroblast-like cells exhibit constitutive, high proliferative capacity and agonist-induced hypertrophy compared with cells prior to transition. We demonstrate that constitutive, synergistic activation of EGFR, Src and ERK kinases is the potential molecular mechanism of this transition. We also demonstrate that 247R triggers two distinct EGFR transactivation-dependent signaling pathways: 1) constitutive Gq-independent β-arrestin-1/Src/MMP/EGFR/ERK-dependent hyperproliferation and 2) agonist-induced Gq- and EGFR/STAT-dependent hypertrophy. Interestingly, in cardiomyoblasts agonist-independent hyperproliferation is MMP-dependent, but in fibroblast-like cells it is MMP-independent, suggesting that expression of α1aAR genetic variant in cardiomyocytes may trigger extracellular matrix remodeling. Thus, these novel findings demonstrate that EGFR transactivation by α1aAR-247R leads to hyperproliferation, hypertrophy and alterations in cardiomyoblasts, suggesting that these unique genetically-mediated alterations in signaling pathways and cellular function may lead to myocardial fibrosis. Such extracellular matrix remodeling may contribute to the genesis of arrhythmias in certain types of heart failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is responsible for millions of deaths worldwide and the variability in disease patterns calls for patient-specific treatment. Therefore, personalized treatment is expected to become a daily routine in prospective clinical tests. In addition to genetic mutation analysis, predictive chemosensitive assays using patient's cells will be carried out as a decision making tool. However, prior to their widespread application in clinics, several challenges linked to the establishment of such assays need to be addressed. To best predict the drug response in a patient, the cellular environment needs to resemble that of the tumor. Furthermore, the formation of homogeneous replicates from a scarce amount of patient's cells is essential to compare the responses under various conditions (compound and concentration). Here, we present a microfluidic device for homogeneous spheroid formation in eight replicates in a perfused microenvironment. Spheroid replicates from either a cell line or primary cells from adenocarcinoma patients were successfully created. To further mimic the tumor microenvironment, spheroid co-culture of primary lung cancer epithelial cells and primary pericytes were tested. A higher chemoresistance in primary co-culture spheroids compared to primary monoculture spheroids was found when both were constantly perfused with cisplatin. This result is thought to be due to the barrier created by the pericytes around the tumor spheroids. Thus, this device can be used for additional chemosensitivity assays (e.g. sequential treatment) of patient material to further approach the personalized oncology field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neospora caninum is one of the most significant parasitic organisms causing bovine abortion worldwide. Despite the economic impact of this infection, relatively little is known about the genetic diversity of this parasite. In this study, using Nc5 and ITS1 nested PCR, N. caninum has been detected in 12 brain samples of aborted fetuses from 298 seropositive dairy cattle collected from four different regions in Tehran, Iran. These specimen (Nc-Iran) were genotyped in multilocus using 9 different microsatellite markers previously described (MS4, MS5, MS6A, MS6B, MS7, MS8, MS10, MS12 and MS21). Microsatellite amplification was completely feasible in 2 samples, semi-completely in 8 samples, and failed in 2 samples. Within the two completely performed allelic profiles of Nc-Iran strains, unique multilocus profiles were obtained for both and novel allelic patterns were found in the MS8 and MS10 microsatellite markers. The Jaccard's similarity index showed significant difference between these two strains and from other standard isolates derived from GenBank such as Nc-Liv, Nc-SweB1, Nc-GER1, KBA1, and KBA2. All samples originating from the same area showed identical allelic numbers and a correlation between the number of repeats and geographic districts was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To systematically review evidence on genetic variants influencing outcomes during warfarin therapy and provide practice recommendations addressing the key questions: (1) Should genetic testing be performed in patients with an indication for warfarin therapy to improve achievement of stable anticoagulation and reduce adverse effects? (2) Are there subgroups of patients who may benefit more from genetic testing compared with others? (3) How should patients with an indication for warfarin therapy be managed based on their genetic test results? METHODS A systematic literature search was performed for VKORC1 and CYP2C9 and their association with warfarin therapy. Evidence was critically appraised, and clinical practice recommendations were developed based on expert group consensus. RESULTS Testing of VKORC1 (-1639G>A), CYP2C9*2, and CYP2C9*3 should be considered for all patients, including pediatric patients, within the first 2 weeks of therapy or after a bleeding event. Testing for CYP2C9*5, *6, *8, or *11 and CYP4F2 (V433M) is currently not recommended. Testing should also be considered for all patients who are at increased risk of bleeding complications, who consistently show out-of-range international normalized ratios, or suffer adverse events while receiving warfarin. Genotyping results should be interpreted using a pharmacogenetic dosing algorithm to estimate the required dose. SIGNIFICANCE This review provides the latest update on genetic markers for warfarin therapy, clinical practice recommendations as a basis for informed decision making regarding the use of genotype-guided dosing in patients with an indication for warfarin therapy, and identifies knowledge gaps to guide future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our knowledge on the many aspects of mammalian reproduction in general and equine reproduction in particular has greatly increased during the last 15 years. Advances in the understanding of the physiology, cell biology, and biochemistry of reproduction have facilitated genetic analyses of fertility. Currently, there are more than 200 genes known that are involved in the production of fertile sperm cells. The completion of a number of mammalian genome projects will aid in the investigation of these genes in different species. Great progress has been made in the understanding of genetic aberrations that lead to male infertility. Additionally, the first genetic mechanisms are being discovered that contribute to the quantitative variation of fertility traits in fertile male animals. As artificial insemination (AI) represents a widespread technology in horse breeding, semen quality traits may eventually become an additional selection criterion for breeding stallions. Current research activities try to identify genetic markers that correlate to these semen quality traits. Here, we will review the current state of genetic research in male fertility and offer some perspectives for future research in horses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sudden cardiac death (SCD) is by definition unexpected and cardiac in nature. The investigation is almost invariably performed by a forensic pathologist. Under these circumstances the role of the forensic pathologist is twofold: (1.) to determine rapidly and efficiently the cause and manner of death and (2.) to initiate a multidisciplinary process in order to prevent further deaths in existing family members. If the death is determined to be due to "natural" causes the district attorney in charge often refuses further examinations. However, additional examinations, i.e. extensive histopathological investigations and/or molecular genetic analyses, are necessary in many cases to clarify the cause of death. The Swiss Society of Legal Medicine created a multidisciplinary working group together with clinical and molecular geneticists and cardiologists in the hope of harmonising the approach to investigate SCD. The aim of this paper is to close the gap between the Swiss recommendations for routine forensic post-mortem cardiac examination and clinical recommendations for genetic testing of inherited cardiac diseases; this is in order to optimise the diagnostic procedures and preventive measures for living family members. The key points of the recommendations are (1.) the forensic autopsy procedure for all SCD victims under 40 years of age, (2.) the collection and storage of adequate samples for genetic testing, (3.) communication with the families, and (4.) a multidisciplinary approach including cardiogenetic counselling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. METHODS The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. RESULTS We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. CONCLUSIONS In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM To identify novel variants associated with anthracycline-induced cardiotoxicity and to assess these in a genotype-guided risk prediction model. PATIENTS & METHODS Two cohorts treated for childhood cancer (n = 344 and 218, respectively) were genotyped for 4578 SNPs in drug ADME and toxicity genes. RESULTS Significant associations were identified in SLC22A17 (rs4982753; p = 0.0078) and SLC22A7 (rs4149178; p = 0.0034), with replication in the second cohort (p = 0.0071 and 0.047, respectively). Additional evidence was found for SULT2B1 and several genes related to oxidative stress. Adding the SLC22 variants to the prediction model improved its discriminative ability (AUC 0.78 vs 0.75 [p = 0.029]). CONCLUSION Two novel variants in SLC22A17 and SLC22A7 were significantly associated with anthracycline-induced cardiotoxicity and improved a genotype-guided risk prediction model, which could improve patient risk stratification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Inability to predict the therapeutic effect of a drug in individual pain patients prolongs the process of drug and dose finding until satisfactory pharmacotherapy can be achieved. Many chronic pain conditions are associated with hypersensitivity of the nervous system or impaired endogenous pain modulation. Pharmacotherapy often aims at influencing these disturbed nociceptive processes. Its effect might therefore depend on the extent to which they are altered. Quantitative sensory testing (QST) can evaluate various aspects of pain processing and might therefore be able to predict the analgesic efficacy of a given drug. In the present study three drugs commonly used in the pharmacological management of chronic low back pain are investigated. The primary objective is to examine the ability of QST to predict pain reduction. As a secondary objective, the analgesic effects of these drugs and their effect on QST are evaluated. METHODS/DESIGN In this randomized, double blinded, placebo controlled cross-over study, patients with chronic low back pain are randomly assigned to imipramine, oxycodone or clobazam versus active placebo. QST is assessed at baseline, 1 and 2 h after drug administration. Pain intensity, side effects and patients' global impression of change are assessed in intervals of 30 min up to two hours after drug intake. Baseline QST is used as explanatory variable to predict drug effect. The change in QST over time is analyzed to describe the pharmacodynamic effects of each drug on experimental pain modalities. Genetic polymorphisms are analyzed as co-variables. DISCUSSION Pharmacotherapy is a mainstay in chronic pain treatment. Antidepressants, anticonvulsants and opioids are frequently prescribed in a "trial and error" fashion, without knowledge however, which drug suits best which patient. The present study addresses the important need to translate recent advances in pain research to clinical practice. Assessing the predictive value of central hypersensitivity and endogenous pain modulation could allow for the implementation of a mechanism-based treatment strategy in individual patients. TRIAL REGISTRATION Clinicaltrials.gov, NCT01179828.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Everolimus (ERL) has become an alternative to calcineurin inhibitors (CNIs) due to its renal-sparing properties, especially in heart transplant (HTx) recipients with kidney dysfunction. However, ERL dosing is challenging due to its narrow therapeutic window combined with high inter-individual pharmacokinetic variability. Our aim was to evaluate the effect of clinical and genetic factors on ERL dosing in a pilot cohort of 37 HTx recipients. METHODS Variants in CYP3A5, CYP3A4, CYP2C8, POR, NR1I2, and ABCB1 were genotyped and clinical data were retrieved from patient charts. RESULTS While ERL trough concentration (C0 ) was within the targeted range for most patients, over 30-fold variability in the dose-adjusted ERL C0 was observed. Regression analysis revealed a significant effect of the non-functional CYP3A5*3 variant on the dose-adjusted ERL C0 (P = 0.031). ERL dose requirement was 0.02 mg/kg/day higher in patients with CYP3A5*1/*3 genotype compared to patients with CYP3A5*3/*3 to reach the targeted C0 (P = 0.041). ERL therapy substantially improved estimated glomerular filtration rate (28.6 ± 6.6 ml/min/1.73m(2) ) in patients with baseline kidney dysfunction. CONCLUSION ERL pharmacokinetics in HTx recipients is highly variable. Our preliminary data on patients on a CNI-free therapy regimen suggest that CYP3A5 genetic variation may contribute to this variability. This article is protected by copyright. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance in Neisseria gonorrhoeae to all available therapeutic antimicrobials has emerged and new efficacious drugs for treatment of gonorrhea are essential. The topoisomerase II inhibitor ETX0914 (also known as AZD0914) is a new spiropyrimidinetrione antimicrobial that has different mechanisms of action from all previous and current gonorrhea treatment options. In this study, the N. gonorrhoeae resistance determinants for ETX0914 were further described and the effects of ETX0914 on the growth of N. gonorrhoeae (ETX0914 wild type, single step selected resistant mutants, and efflux pump mutants) were examined in a novel in vitro time-kill curve analysis to estimate pharmacodynamic parameters of the new antimicrobial. For comparison, ciprofloxacin, azithromycin, ceftriaxone, and tetracycline were also examined (separately and in combination with ETX0914). ETX0914 was rapidly bactericidal for all wild type strains and had similar pharmacodynamic properties to ciprofloxacin. All selected resistant mutants contained mutations in amino acid codons D429 or K450 of GyrB and inactivation of the MtrCDE efflux pump fully restored the susceptibility to ETX0914. ETX0914 alone and in combination with azithromycin and ceftriaxone was highly effective against N. gonorrhoeae and synergistic interaction with ciprofloxacin, particularly for ETX0914-resistant mutants, was found. ETX0914, monotherapy or in combination with azithromycin (to cover additional sexually transmitted infections), should be considered for phase III clinical trials and future gonorrhea treatment.