54 resultados para Generative Exam System (Computer system)


Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work, we provide a passive location monitoring system for IEEE 802.15.4 signal emitters. The system adopts software defined radio techniques to passively overhear IEEE 802.15.4 packets and to extract power information from baseband signals. In our system, we provide a new model based on the nonlinear regression for ranging. After obtaining distance information, a Weighted Centroid (WC) algorithm is adopted to locate users. In WC, each weight is inversely proportional to the nth power of propagation distance, and the degree n is obtained from some initial measurements. We evaluate our system in a 16m-18m area with complex indoor propagation conditions. We are able to achieve a median error of 2:1m with only 4 anchor nodes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

BACKGROUND The aim of this study was to evaluate imaging-based response to standardized neoadjuvant chemotherapy (NACT) regimen by dynamic contrast-enhanced magnetic resonance mammography (DCE-MRM), whereas MR images were analyzed by an automatic computer-assisted diagnosis (CAD) system in comparison to visual evaluation. MRI findings were correlated with histopathologic response to NACT and also with the occurrence of metastases in a follow-up analysis. PATIENTS AND METHODS Fifty-four patients with invasive ductal breast carcinomas received two identical MRI examinations (before and after NACT; 1.5T, contrast medium gadoteric acid). Pre-therapeutic images were compared with post-therapeutic examinations by CAD and two blinded human observers, considering morphologic and dynamic MRI parameters as well as tumor size measurements. Imaging-assessed response to NACT was compared with histopathologically verified response. All clinical, histopathologic, and DCE-MRM parameters were correlated with the occurrence of distant metastases. RESULTS Initial and post-initial dynamic parameters significantly changed between pre- and post-therapeutic DCE-MRM. Visually evaluated DCE-MRM revealed sensitivity of 85.7%, specificity of 91.7%, and diagnostic accuracy of 87.0% in evaluating the response to NACT compared to histopathology. CAD analysis led to more false-negative findings (37.0%) compared to visual evaluation (11.1%), resulting in sensitivity of 52.4%, specificity of 100.0%, and diagnostic accuracy of 63.0%. The following dynamic MRI parameters showed significant associations to occurring metastases: Post-initial curve type before NACT (entire lesions, calculated by CAD) and post-initial curve type of the most enhancing tumor parts after NACT (calculated by CAD and manually). CONCLUSIONS In the accurate evaluation of response to neoadjuvant treatment, CAD systems can provide useful additional information due to the high specificity; however, they cannot replace visual imaging evaluation. Besides traditional prognostic factors, contrast medium-induced dynamic MRI parameters reveal significant associations to patient outcome, i.e. occurrence of distant metastases.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Indoor localization systems become more interesting for researchers because of the attractiveness of business cases in various application fields. A WiFi-based passive localization system can provide user location information to third-party providers of positioning services. However, indoor localization techniques are prone to multipath and Non-Line Of Sight (NLOS) propagation, which lead to significant performance degradation. To overcome these problems, we provide a passive localization system for WiFi targets with several improved algorithms for localization. Through Software Defined Radio (SDR) techniques, we extract Channel Impulse Response (CIR) information at the physical layer. CIR is later adopted to mitigate the multipath fading problem. We propose to use a Nonlinear Regression (NLR) method to relate the filtered power information to propagation distances, which significantly improves the ranging accuracy compared to the commonly used log-distance path loss model. To mitigate the influence of ranging errors, a new trilateration algorithm is designed as well by combining Weighted Centroid and Constrained Weighted Least Square (WC-CWLS) algorithms. Experiment results show that our algorithm is robust against ranging errors and outperforms the linear least square algorithm and weighted centroid algorithm.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this paper we present BitWorker, a platform for community distributed computing based on BitTorrent. Any splittable task can be easily specified by a user in a meta-information task file, such that it can be downloaded and performed by other volunteers. Peers find each other using Distributed Hash Tables, download existing results, and compute missing ones. Unlike existing distributed computing schemes relying on centralized coordination point(s), our scheme is totally distributed, therefore, highly robust. We evaluate the performance of BitWorker using mathematical models and real tests, showing processing and robustness gains. BitWorker is available for download and use by the community.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The overarching objective of this dissertation is to uncover why and how individually experienced fits and misfits translate into different outcomes of user behavior and satisfaction and whether these individual fit/misfit outcomes are in line with organizational intent. In search of patterns and possible archetype users in the context of ES PIPs, this dissertation is the first study that specifically links the theoretical concepts of the aggregated individual fit experiences with the individual and organizational outcome of these experiences (i.e. behavioral reaction, user satisfaction, and alignment with organizational intent). The case study’s findings provide preliminary support for four archetype users characterized by specific fit/misfit experience-outcome patterns.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

PURPOSE Laser range scanners (LRS) allow performing a surface scan without physical contact with the organ, yielding higher registration accuracy for image-guided surgery (IGS) systems. However, the use of LRS-based registration in laparoscopic liver surgery is still limited because current solutions are composed of expensive and bulky equipment which can hardly be integrated in a surgical scenario. METHODS In this work, we present a novel LRS-based IGS system for laparoscopic liver procedures. A triangulation process is formulated to compute the 3D coordinates of laser points by using the existing IGS system tracking devices. This allows the use of a compact and cost-effective LRS and therefore facilitates the integration into the laparoscopic setup. The 3D laser points are then reconstructed into a surface to register to the preoperative liver model using a multi-level registration process. RESULTS Experimental results show that the proposed system provides submillimeter scanning precision and accuracy comparable to those reported in the literature. Further quantitative analysis shows that the proposed system is able to achieve a patient-to-image registration accuracy, described as target registration error, of [Formula: see text]. CONCLUSIONS We believe that the presented approach will lead to a faster integration of LRS-based registration techniques in the surgical environment. Further studies will focus on optimizing scanning time and on the respiratory motion compensation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.