85 resultados para GERM-CELL TUMORS
Resumo:
OBJECT: The aim of this study was to develop and characterize a new orthotopic, syngeneic, transplantable mouse brain tumor model by using the cell lines Tu-9648 and Tu-2449, which were previously isolated from tumors that arose spontaneously in glial fibrillary acidic protein (GFAP)-v-src transgenic mice. METHODS: Striatal implantation of a 1-microl suspension of 5000 to 10,000 cells from either clone into syngeneic B6C3F1 mice resulted in tumors that were histologically identified as malignant gliomas. Prior subcutaneous inoculations with irradiated autologous cells inhibited the otherwise robust development of a microscopically infiltrating malignant glioma. Untreated mice with implanted tumor cells were killed 12 days later, when the resultant gliomas were several millimeters in diameter. Immunohistochemically, the gliomas displayed both the astroglial marker GFAP and the oncogenic form of signal transducer and activator of transcription-3 (Stat3). This form is called tyrosine-705 phosphorylated Stat3, and is found in many malignant entities, including human gliomas. Phosphorylated Stat3 was particularly prominent, not only in the nucleus but also in the plasma membrane of peripherally infiltrating glioma cells, reflecting persistent overactivation of the Janus kinase/Stat3 signal transduction pathway. The Tu-2449 cells exhibited three non-random structural chromosomal aberrations, including a deletion of the long arm of chromosome 2 and an apparently balanced translocation between chromosomes 1 and 3. The GFAP-v-src transgene was mapped to the pericentromeric region of chromosome 18. CONCLUSIONS: The high rate of engraftment, the similarity to the high-grade malignant glioma of origin, and the rapid, locally invasive growth of these tumors should make this murine model useful in testing novel therapies for human malignant gliomas.
Resumo:
Members of the vascular endothelial growth factor (VEGF) family are critical players in angiogenesis and lymphangiogenesis. Although VEGF-A has been shown to exert fundamental functions in physiologic and pathologic angiogenesis, the exact role of the VEGF family member placental growth factor (PlGF) in tumor angiogenesis has remained controversial. To gain insight into PlGF function during tumor angiogenesis, we have generated transgenic mouse lines expressing human PlGF-1 in the beta cells of the pancreatic islets of Langerhans (Rip1PlGF-1). In single-transgenic Rip1PlGF-1 mice, intra-insular blood vessels are found highly dilated, whereas islet physiology is unaffected. Upon crossing of these mice with the Rip1Tag2 transgenic mouse model of pancreatic beta cell carcinogenesis, tumors of double-transgenic Rip1Tag2;Rip1PlGF-1 mice display reduced growth due to attenuated tumor angiogenesis. The coexpression of transgenic PlGF-1 and endogenous VEGF-A in the beta tumor cells of double-transgenic animals causes the formation of low-angiogenic hPlGF-1/mVEGF-A heterodimers at the expense of highly angiogenic mVEGF-A homodimers resulting in diminished tumor angiogenesis and reduced tumor infiltration by neutrophils, known to contribute to the angiogenic switch in Rip1Tag2 mice. The results indicate that the ratio between the expression levels of two members of the VEGF family of angiogenic factors, PlGF-1 and VEGF-A, determines the overall angiogenic activity and, thus, the extent of tumor angiogenesis and tumor growth.
Resumo:
Cholangiocarcinoma is the second most common malignant tumor of the liver. We analyzed, immunohistochemically, the significance of cell cycle- and apoptosis-related markers in 128 cholangiocarcinomas (42 intrahepatic, 70 extrahepatic, and 16 gallbladder carcinomas) combined in a tissue microarray. Follow-up was available for 57 patients (44.5%). In comparison with normal tissue (29 specimens), cholangiocarcinomas expressed significantly more frequently p53, bcl-2, bax, and COX-2 (P.05 <). Intrahepatic tumors were significantly more frequently bcl-2+ and p16+, whereas extrahepatic tumors were more often p53+ (P < .05). Loss of p16 expression was associated with reduced survival of patients. Our data show that p53, bcl-2, bax, and COX-2 have an important role in the pathogenesis of cholangiocarcinomas. The differential expression of p16, bcl-2, and p53 between intrahepatic and extrahepatic tumors demonstrates that there are location-related differences in the phenotype and the genetic profiles of these tumors. Moreover, p16 was identified as an important prognostic marker in cholangiocarcinomas.
Resumo:
Primary perivascular epithelioid cell tumor (PEComa) of the liver is a very rare example of an emerging family of hepatic PEC tumors. Only few cases have been described so far. We report the case of a large but benign hepatic PEComa in a 53-year-old man without signs of tuberous sclerosis. In contrast to recently described PEC-derived liver tumors in children and young adults, this neoplasm was not related to the hepatic ligaments but had developed deeply within the liver substance. The neoplastic cells displayed the complete phenotype typical for PEComas, i.e. reactivity for several melanoma markers and for smooth muscle actin. The unique relationship of myoid tumor cells to the adventitia of blood vessels prompted us, in comparison with published findings obtained with angiomyolipomas, to comment on the possible origin of the still enigmatic perivascular epithelioid cells.
Resumo:
PURPOSE: Peptide receptors are frequently overexpressed in human tumors, allowing receptor-targeted scintigraphic imaging and therapy with radiolabeled peptide analogues. Neuropeptide Y (NPY) receptors are new candidates for these applications, based on their high expression in specific cancers. Because NPY receptors are expressed in selected sarcoma cell lines and because novel treatment options are needed for sarcomas, this study assessed the NPY receptor in primary human sarcomas. EXPERIMENTAL DESIGN: Tumor tissues of 88 cases, including Ewing sarcoma family of tumors (ESFT), synovial sarcomas, osteosarcomas, chondrosarcomas, liposarcomas, angiosarcomas, rhabdomyosarcomas, leiomyosarcomas, and desmoid tumors, were investigated for NPY receptor protein with in vitro receptor autoradiography using (125)I-labeled NPY receptor ligands and for NPY receptor mRNA expression with in situ hybridization. RESULTS: ESFT expressed the NPY receptor subtype Y1 on tumor cells in remarkably high incidence (84%) and density (mean, 5,314 dpm/mg tissue). Likewise, synovial sarcomas expressed Y1 on tumor cells in high density (mean, 7,497 dpm/mg; incidence, 40%). The remaining tumors expressed NPY receptor subtypes Y1 or Y2 at lower levels. Moreover, many of the sarcomas showed Y1 expression on intratumoral blood vessels. In situ hybridization for Y1 mRNA confirmed the autoradiography results. CONCLUSIONS: NPY receptors are novel molecular markers for human sarcomas. Y1 may inhibit growth of specific sarcomas, as previously shown in an in vivo mouse model of human ESFT. The high Y1 expression on tumor cells of ESFT and synovial sarcomas and on blood vessels in many other sarcomas represents an attractive basis for an in vivo tumor targeting.
Resumo:
Gastrointestinal peptide hormone receptors, like somatostatin receptors, are often overexpressed in human cancer, allowing receptor-targeted tumor imaging and therapy. A novel candidate for these applications is the secretin receptor recently identified in pancreatic and cholangiocellular carcinomas. In the present study, secretin receptors were assessed in a non-gastrointestinal tissue, the human lung. Non-small-cell lung cancers (n=26), small-cell lung cancers (n=10), bronchopulmonary carcinoid tumors (n=29), and non-neoplastic lung (n=46) were investigated for secretin receptor protein expression with in vitro receptor autoradiography, using (125)I-[Tyr(10)] rat secretin and for secretin receptor transcripts with RT-PCR. Secretin receptor protein expression was found in 62% of bronchopulmonary carcinoids in moderate to high density, in 12% of non-small cell lung cancers in low density, but not in small cell lung cancers. In tumors found to be secretin receptor positive by autoradiography, RT-PCR revealed transcripts for the wild-type secretin receptor and for novel secretin receptor splice variants. In the non-neoplastic lung, secretin receptor protein expression was observed in low density along the alveolar septa in direct tumor vicinity in cases of acute inflammation, but not in histologically normal lung. In the autoradiographically positive peritumoral lung, RT-PCR showed transcripts for the wild-type secretin receptor and for a secretin receptor spliceoform different from those occurring in lung and gut tumors. In conclusion, secretin receptors are new markers for bronchopulmonary carcinoid tumors, and represent the molecular basis for an in vivo targeting of carcinoid tumors for diagnosis and therapy. Furthermore, secretin receptors may play a role in peritumoral lung pathophysiology. Secretin receptor mis-splicing specifically occurs in tumor and non-tumor lung pathology.
Resumo:
BACKGROUND: To use amifostine concurrently with radiochemotherapy (CT-RT) or radiotherapy (RT) alone in order to prevent dry eye syndrome in patients with malignancies located in the fronto-orbital region. METHODS: Five patients (2 males, 3 females) with diagnosed malignancies (Non-Hodgkin B-cell Lymphoma, neuroendocrine carcinoma) involving the lacrimal gland, in which either combined CT-RT or local RT were indicated, were prophylactically treated with amifostine (500 mg sc). Single RT fraction dose, total dose and treatment duration were individually adjusted to the patient's need. Acute and late adverse effects were recorded using the RTOG score. Subjective and objective dry eye assessment was performed for the post-treatment control of lacrimal gland function. RESULTS: All patients have completed CT-RT or RT as indicated. The median total duration of RT was 29 days (range, 23 - 39 days) and the median total RT dose was 40 Gy (range, 36 - 60 Gy). Median lacrimal gland exposure was 35.9 Gy (range, 16.8 - 42.6 Gy). Very good partial or complete tumor remission was achieved in all patients. The treatment was well tolerated without major toxic reactions. Post-treatment control did not reveal in any patient either subjective or objective signs of a dry eye syndrome. CONCLUSION: The addition of amifostine to RT/CT-RT of patients with tumors localized in orbital region was found to be associated with absence of dry eye syndrome.
Resumo:
MicroRNAs (miRNA) are negative regulators of gene expression at the posttranscriptional level, which are involved in tumorigenesis. Two miRNAs, miR-15a and miR-16, which are located at chromosome 13q14, have been implicated in cell cycle control and apoptosis, but little information is available about their role in solid tumors. To address this question, we established a protocol to quantify miRNAs from laser capture microdissected tissues. Here, we show that miR-15a/miR-16 are frequently deleted or down-regulated in squamous cell carcinomas and adenocarcinomas of the lung. In these tumors, expression of miR-15a/miR-16 inversely correlates with the expression of cyclin D1. In non-small cell lung cancer (NSCLC) cell lines, cyclins D1, D2, and E1 are directly regulated by physiologic concentrations of miR-15a/miR-16. Consistent with these results, overexpression of these miRNAs induces cell cycle arrest in G(1)-G(0). Interestingly, H2009 cells lacking Rb are resistant to miR-15a/miR-16-induced cell cycle arrest, whereas reintroduction of functional Rb resensitizes these cells to miRNA activity. In contrast, down-regulation of Rb in A549 cells by RNA interference confers resistance to these miRNAs. Thus, cell cycle arrest induced by these miRNAs depends on the expression of Rb, confirming that G(1) cyclins are major targets of miR-15a/miR-16 in NSCLC. Our results indicate that miR-15a/miR-16 are implicated in cell cycle control and likely contribute to the tumorigenesis of NSCLC.
Resumo:
BACKGROUND: Number of intratumoral mast cells predicts survival in various cancers. The prognostic significance of such mast cells in surgically treated prostate cancer is unknown. METHODS: Mast cell densities were determined in prostate cancer samples of more than 2,300 hormone-naïve patients using a tissue microarray format in correlation with clinical follow-up data. Mast cells were visualized immunohistochemically (c-kit). All patients were homogeneously treated by radical prostatectomy at a single institution. RESULTS: Mast cells were present in 95.9% of the tumor samples. Median mast cell number on the tissue spot was 9 (range: 0-90; median density: 31 mast cells/mm(2)). High mast cell densities were significantly associated with more favorable tumors having lower preoperative prostate-specific antigen (P = 0.0021), Gleason score (P < 0.0001) and tumor stage (P < 0.0001) than tumors with low mast cell densities. Prostate-specific antigen recurrence-free survival significantly (P = 0.0001) decreased with decline of mast cell density showing poorest outcome for patients without intratumoral mast cells. In multivariate analysis mast cell density narrowly missed to add independent prognostic information (P = 0.0815) for prostate-specific antigen recurrence. CONCLUSION: High intratumoral mast cell density is associated with favorable tumor characteristics and good prognosis in prostate cancer. This finding is consistent with a role of mast cells in the immunological host-defense reaction on prostate cancer. Triggering mast cell activity might expand immunotherapeutic strategies in prostate cancer.
Resumo:
Here we investigate the expression of OCT4 human lung adenocarcinoma and bronchioloalveolar carcinoma (BAC) tumor biopsies and tumor-derived primary cell cultures. OCT4 has been detected in several human tumors suggesting a potentially critical role in tumorigenesis. We assessed the presence of OCT4 in clinical tumor samples of both adenocarcinoma and BAC at the cellular and transcriptional levels, respectively. Furthermore, we evaluated tumor-derived cell cultures for potential differences in OCT4 expression. Immunohistochemical analysis depicted OCT4 in 2 of 8 adenocarcinoma tumor samples and 3 of 5 BAC tumor samples, with no apparent difference in the degree of expression among the sections examined. These results were validated by transcript analysis. Flow cytometric assessment of 11 adenocarcinoma-derived cell cultures and 3 BAC-derived cell cultures revealed significantly higher OCT4 expression in adenocarcinoma tumors compared to their normal counterparts. This, however, was not observed in the BAC cultures. Comparative studies of OCT4 in adenocarcinoma and BAC tumor cell cultures demonstrated a dramatically higher expression in the former. The expression of OCT4 may represent a specific and effective target for therapeutic intervention in adenocarcinoma and BAC. In addition, the aberrant expression and distribution of OCT4 may indicate important parameters concerning the differences between adenocarcinoma and BAC.
Resumo:
FGFRL1 is a novel member of the FGF receptor family. It is expressed at very low levels in a great variety of cell lines and at relatively high levels in SW1353 chondrosarcoma cells, MG63 osteosarcoma cells and A204 rhabdomyosarcoma cells. Screening of 241 different human tumors with the help of a cancer profiling array suggested major alterations in the relative expression of FGFRL1 in ovarian tumors. Five distinct ovary tumors were therefore analyzed by quantitative and competitive PCR. Several tumors were found to exhibit a significant decrease in the expression of FGFRL1 in the tumor tissue relative to the matched control tissue. One ovarian tumor showed a 25-fold increase in the relative expression. Since FGFRL1 appears to be involved in the control of cell proliferation and differentiation, its aberrant expression might contribute to the development and progression of ovarian tumors.
Resumo:
BACKGROUND: With current treatment strategies, nearly half of all medulloblastoma (MB) patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to cause anaplasia and correlate with unfavorable prognosis. METHODS: To study the role of c-MYC in MB biology, we down-regulated c-MYC expression by using small interfering RNA (siRNA) and investigated changes in cellular proliferation, cell cycle analysis, apoptosis, telomere maintenance, and response to ionizing radiation (IR) and chemotherapeutics in a representative panel of human MB cell lines expressing different levels of c-MYC (DAOY wild-type, DAOY transfected with the empty vector, DAOY transfected with c-MYC, D341, and D425). RESULTS: siRNA-mediated c-MYC down-regulation resulted in an inhibition of cellular proliferation and clonogenic growth, inhibition of G1-S phase cell cycle progression, and a decrease in human telomerase reverse transcriptase (hTERT) expression and telomerase activity. On the other hand, down-regulation of c-MYC reduced apoptosis and decreased the sensitivity of human MB cells to IR, cisplatin, and etoposide. This effect was more pronounced in DAOY cells expressing high levels of c-MYC when compared with DAOY wild-type or DAOY cells transfected with the empty vector. CONCLUSION: In human MB cells, in addition to its roles in growth and proliferation, c-MYC is also a potent inducer of apoptosis. Therefore, targeting c-MYC might be of therapeutic benefit when used sequentially with chemo- and radiotherapy rather than concomitantly.
Resumo:
The present study reports on the surgical and prosthodontic rehabilitation of 46 patients, 31 male and 15 female, after resection of oral tumors. The treatment was carried out from 2004 to 2007 at the Department of Prosthodontics, University of Bern, with a follow-up time of 3 to 6 years. The average age at diagnosis was 54 years. 76% of all tumors were squamous cell carcinoma, followed by adenocarcinoma. Resection of the tumors including soft and/or hard tissues was performed in all patients. 80% of them additionally underwent radiotherapy and 40% chemotherapy. A full block resection of the mandible was perfomed in 23 patients, and in 10 patients, the tumor resection resulted in an oronasal communication. 29 patients underwent grafting procedures, mostly consisting of a free fibula flap transplant. To enhance the prosthetic treatment outcome and improve the prosthesis stability, a total of 114 implants were placed. However, 14 implants were not loaded because they failed during the healing period or the patient could not complete the final treatment with the prostheses. The survival rate of the implants reached 84.2% after 4 to 5 years. Many patients were only partially dentate before the tumors were detected, and further teeth had to be extracted in the course of the tumor therapy. Altogether, 31 jaws became or remained edentulous. Implants provide stability and may facilitate the adaptation to the denture, but their survival rate was compromised. Mostly, patients were fitted with removable prostheses with obturators in the maxilla and implant-supported complete dentures with bars in the mandible. Although sequelae of tumor resection are similar in many patients, the individual intermaxillary relations, facial morphology and functional capacity vary significantly. Thus, individual management is required for prosthetic rehabilitation.
Resumo:
Loss of p53 is considered to allow progression of colorectal tumors from the adenoma to the carcinoma stage. Using mice with an intestinal epithelial cell (IEC)-specific p53 deletion, we demonstrate that loss of p53 alone is insufficient to initiate intestinal tumorigenesis but markedly enhances carcinogen-induced tumor incidence and leads to invasive cancer and lymph node metastasis. Whereas p53 controls DNA damage and IEC survival during the initiation stage, loss of p53 during tumor progression is associated with increased intestinal permeability, causing formation of an NF-κB-dependent inflammatory microenvironment and the induction of epithelial-mesenchymal transition. Thus, we propose a p53-controlled tumor-suppressive function that is independent of its well-established role in cell-cycle regulation, apoptosis, and senescence.
Resumo:
Recently, we reported a functional interaction between miR-21 and its identified chemokine target CCL20 in colorectal cancer (CRC) cell lines. Here, we investigated whether such functional interactions are permitted at the cellular level which would require an inverse correlation of expression and also co-expression of miR-21 and CCL20 in the same cell. Expression profiling was performed using qPCR, and ELISA, in situ hybridization and immunohistochemistry were applied for the presentation of their cellular localization. We demonstrated that miR-21 as well as CCL20 were both significantly upregulated in CRC tissues; thus, showing no antidromic expression pattern. This provided an initial clue that miR-21 and CCL20 may not be expressed in the same cell. In addition, we located miR-21 expression at the cellular level predominantly in stromal cells such as tumor-associated fibroblasts and to a minor degree in immune cells such as macrophages and lymphocytes. Likewise, CCL20 expression was primarily detected in tumor-infiltrating immune cells. Thus, investigating the cellular localization of miR-21 and its target CCL20 revealed that both molecules are expressed predominantly in the microenvironment of CRC tumors.