66 resultados para Forensic psychiatry.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traumatic lesions of the subcutaneous fatty tissue provide important clues for forensic reconstruction. The interpretation of these patterns requires a precise description and recording of the position and extent of each lesion. During conventional autopsy, this evaluation is performed by dissecting the skin and subcutaneous tissues in successive layers. In this way, depending on the force and type of impact (right angle or tangent), several morphologically distinct stages of fatty tissue damage can be differentiated: perilobular hemorrhage (I), contusion (II), or disintegration (III) of the fat lobuli, and disintegration with development of a subcutaneous cavity (IV). In examples of virtopsy cases showing blunt trauma to the skin and fatty tissue, we analyzed whether these lesions can also be recorded and classified using multislice computed tomography (MSCT) and magnetic resonance imaging (MRI). MSCT has proven to be a valuable screening method to detect the lesions, but MRI is necessary in order to properly differentiate and classify the grade of damage. These noninvasive radiological diagnostic tools can be further developed to play an important role in forensic examinations, in particular when it comes to evaluating living trauma victims.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last century, studies established the origin of pulmonary fat embolism (PFE) and identified mechanical trauma as main source for PFE. This prospective study focused on determining a possible influence of cardiopulmonary resuscitation (CPR), in the context of an aging population, on the occurrence of PFE. Lung tissue samples from 256 bodies were examined using the twin-edged knife technique without preliminary fixation but after staining with Sudan III. PFE grading was determined according to Falzi and performed at a 10× magnification. For statistical analysis, bodies were grouped by age, gender, and putrefaction and categorized following whether they had experienced trauma, CPR, the combination of both, or no mechanical impact. There was a significant correlation of trauma, CPR, and the combination of both to PFE but no noticeable influence of gender or putrefaction. An age over 70 years promotes a PFE due to resuscitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The purpose of this paper is to present the technical specifications of the Forensic Reference Phantom (FRP), to test its behavior relative to organic test materials, and discuss potential applications of the phantom in forensic radiology. Materials and method The FRP prototype is made of synthetic materials designed to simulate the computed tomography (CT) attenuation of water. It has six bore holes that accommodate multiuse containers. These containers were filled with test materials and scanned at 80 kVp, 120 kVp, and 140 kVp. X-ray attenuation was measured by two readers. Intra- and inter-reader reliability was assessed using the intra-class correlation coefficient (ICC). Significance levels between mean CT numbers at 80 kVp, 120 kVp, and 140 kVp were assessed with the Friedman-test. The T-test was used to assess significance levels between the FRP and water. Results Overall mean CT numbers ranged from −3.0–3.7HU for the FRP; −1000.3–−993.5HU for air; −157.7– −108.1HU for oil; 35.5–42.0HU for musle tissue; and 1301.5–2354.8HU for cortical bone. Inter-reader and intra-reader reliability were excellent (ICC>0.994; and ICC=0.999 respectively). CT numbers were significantly different at different energy levels. There was no significant difference between the attenuation of the FRP and water. Conclusions The FRP is a new tool for quality assurance and research in forensic radiology. The mean CT attenuation of the FRP is equivalent to water. The phantom can be scanned during routine post-mortem CT to assess the composition of unidentified objects. In addition, the FRP may be used to investigate new imaging algorithms and scan protocols in forensic radiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-mortem MR (PMMR) imaging is a powerful diagnostic tool with a wide scope in forensic radiology. In the past 20 years, PMMR has been used as both an adjunct and an alternative to autopsy. The role of PMMR in forensic death investigations largely depends on the rules and habits of local jurisdictions, availability of experts, financial resources, and individual case circumstances. PMMR images are affected by post-mortem changes, including position-dependent sedimentation, variable body temperature and decomposition. Investigators must be familiar with the appearance of normal findings on PMMR to distinguish them from disease or injury. Coronal whole-body images provide a comprehensive overview. Notably, short tau inversion–recovery (STIR) images enable investigators to screen for pathological fluid accumulation, to which we refer as “forensic sentinel sign”. If scan time is short, subsequent PMMR imaging may be focussed on regions with a positive forensic sentinel sign. PMMR offers excellent anatomical detail and is especially useful to visualize pathologies of the brain, heart, subcutaneous fat tissue and abdominal organs. PMMR may also be used to document skeletal injury. Cardiovascular imaging is a core area of PMMR imaging and growing evidence indicates that PMMR is able to detect ischaemic injury at an earlier stage than traditional autopsy and routine histology. The aim of this review is to present an overview of normal findings on forensic PMMR, provide general advice on the application of PMMR and summarise the current literature on PMMR imaging of the head and neck, cardiovascular system, abdomen and musculoskeletal system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forensic radiology is a new subspecialty that has arisen worldwide in the field of forensic medicine. Postmortem computed tomography (PMCT) and, to a lesser extent, PMCT angiography (PMCTA), are established imaging methods that have replaced dated conventional X-ray images in morgues. However, these methods have not been standardized for postmortem imaging. Therefore, this article outlines the main approach for a recommended standard protocol for postmortem cross-sectional imaging that focuses on unenhanced PMCT and PMCTA. This review should facilitate the implementation of a high-quality protocol that enables standardized reporting in morgues, associated hospitals or private practices that perform forensic scans to provide the same quality that clinical scans provide in court.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sudden cardiac death (SCD) is by definition unexpected and cardiac in nature. The investigation is almost invariably performed by a forensic pathologist. Under these circumstances the role of the forensic pathologist is twofold: (1.) to determine rapidly and efficiently the cause and manner of death and (2.) to initiate a multidisciplinary process in order to prevent further deaths in existing family members. If the death is determined to be due to "natural" causes the district attorney in charge often refuses further examinations. However, additional examinations, i.e. extensive histopathological investigations and/or molecular genetic analyses, are necessary in many cases to clarify the cause of death. The Swiss Society of Legal Medicine created a multidisciplinary working group together with clinical and molecular geneticists and cardiologists in the hope of harmonising the approach to investigate SCD. The aim of this paper is to close the gap between the Swiss recommendations for routine forensic post-mortem cardiac examination and clinical recommendations for genetic testing of inherited cardiac diseases; this is in order to optimise the diagnostic procedures and preventive measures for living family members. The key points of the recommendations are (1.) the forensic autopsy procedure for all SCD victims under 40 years of age, (2.) the collection and storage of adequate samples for genetic testing, (3.) communication with the families, and (4.) a multidisciplinary approach including cardiogenetic counselling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE In traumatic brain injury, diffusion-weighted and diffusion tensor imaging of the brain are essential techniques for determining the pathology sustained and the outcome. Postmortem cross-sectional imaging is an established adjunct to forensic autopsy in death investigation. The purpose of this prospective study was to evaluate postmortem diffusion tensor imaging in forensics for its feasibility, influencing factors and correlation to the cause of death compared with autopsy. METHODS Postmortem computed tomography, magnetic resonance imaging, and diffusion tensor imaging with fiber tracking were performed in 10 deceased subjects. The Likert scale grading of colored fractional anisotropy maps was correlated to the body temperature and intracranial pathology to assess the diagnostic feasibility of postmortem diffusion tensor imaging and fiber tracking. RESULTS Optimal fiber tracking (>15,000 fiber tracts) was achieved with a body temperature at 10°C. Likert scale grading showed no linear correlation (P > 0.7) to fiber tract counts. No statistically significant correlation between total fiber count and postmortem interval could be observed (P = 0.122). Postmortem diffusion tensor imaging and fiber tracking allowed for radiological diagnosis in cases with shearing injuries but was impaired in cases with pneumencephalon and intracerebral mass hemorrhage. CONCLUSIONS Postmortem diffusion tensor imaging with fiber tracking provides an exceptional in situ insight "deep into the fibers" of the brain with diagnostic benefit in traumatic brain injury and axonal injuries in the assessment of the underlying cause of death, considering influencing factors for optimal imaging technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.