212 resultados para Femoral neck
Resumo:
BACKGROUND Traditionally arthrotomy has rarely been performed during surgery for slipped capital femoral epiphysis (SCFE). As a result, most pathophysiological information about the articular surfaces was derived clinically and radiographically. Novel insights regarding deformity-induced damage and epiphyseal perfusion became available with surgical hip dislocation. QUESTIONS/PURPOSES We (1) determined the influence of chronicity of prodromal symptoms and severity of SCFE deformity on severity of cartilage damage. (2) In surgically confirmed disconnected epiphyses, we determined the influence of injury and time to surgery on epiphyseal perfusion; and (3) the frequency of new bone at the posterior neck potentially reducing perfusion during epimetaphyseal reduction. METHODS We reviewed 116 patients with 119 SCFE and available records treated between 1996 and 2011. Acetabular cartilage damage was graded as +/++/+++ in 109 of the 119 hips. Epiphyseal perfusion was determined with laser-Doppler flowmetry at capsulotomy and after reduction. Information about bone at the posterior neck was retrieved from operative reports. RESULTS Ninety-seven of 109 hips (89%) had documented cartilage damage; severity was not associated with higher slip angle or chronicity; disconnected epiphyses had less damage. Temporary or definitive cessation of perfusion in disconnected epiphyses increased with time to surgery; posterior bone resection improved the perfusion. In one necrosis, the retinaculum was ruptured; two were in the group with the longest time interval. Posterior bone formation is frequent in disconnected epiphyses, even without prodromal periods. CONCLUSIONS Addressing the cause of cartilage damage (cam impingement) should become an integral part of SCFE surgery. Early surgery for disconnected epiphyses appears to reduce the risk of necrosis. Slip reduction without resection of posterior bone apposition may jeopardize epiphyseal perfusion. LEVEL OF EVIDENCE Level IV, retrospective case series. See Guidelines for Authors for a complete description of levels of evidence.
Resumo:
BACKGROUND In some hips with cam-type femoroacetabular impingement (FAI), we observed a morphology resembling a more subtle form of slipped capital femoral epiphysis (SCFE). Theoretically, the morphology in these hips should differ from hips with a primary cam-type deformity. QUESTIONS/PURPOSES We asked if (1) head-neck offset; (2) epiphyseal angle; and (3) tilt angle differ among hips with a slip-like morphology, idiopathic cam, hips after in situ pinning of SCFE, and normal hips; and (4) what is the prevalence of a slip-like morphology among cam-type hips? METHODS We retrospectively compared the three-dimensional anatomy of hips with a slip-like morphology (29 hips), in situ pinning for SCFE (eight hips), idiopathic cam deformity (171 hips), and 30 normal hips using radial MRI arthrography. Normal hips were derived from 17 asymptomatic volunteers. All other hips were recruited from a series of 277 hips (243 patients) seen at a specialized academic hip center between 2006 and 2010. Forty-one hips with isolated pincer deformity were excluded. Thirty-six of 236 hips had a known cause of cam impingement (secondary cam), including eight hips after in situ pinning of SCFE (postslip group). The 200 hips with a primary cam were separated in hips with a slip-like morphology (combination of positive fovea sign [if the neck axis did not intersect with the fovea capitis] and a tilt angle [between the neck axis and perpendicular to the basis of the epiphysis] exceeding 4°) and hips with an idiopathic cam. We evaluated offset ratio, epiphyseal angle (angle between the neck axis and line connecting the center of the femoral head and the point where the physis meets the articular surface), and tilt angle circumferentially around the femoral head-neck axis. Prevalence of slip-like morphology was determined based on the total of 236 hips with cam deformities. RESULTS Offset ratio was decreased anterosuperiorly in idiopathic cam, slip-like, and postslip (eg, 1 o'clock position with a mean offset ranging from 0.00 to 0.14; p < 0.001 for all groups) compared with normal hips (0.25 ± 0.06 [95% confidence interval, 0.13-0.37]) and increased posteroinferiorly in slip-like (eg, 8 o'clock position, 0.5 ± 0.09 [0.32-0.68]; p < 0.001) and postslip groups (0.55 ± 0.12 [0.32-0.78]; p < 0.001) and did not differ in idiopathic cam (0.32 ± 0.09 [0.15-0.49]; p = 0.323) compared with normal (0.31 ± 0.07 [0.18-0.44]) groups. Epiphyseal angle was increased anterosuperiorly in the slip-like (eg, 1 o'clock position, 70° ± 9° [51°-88°]; p < 0.001) and postslip groups (75° ± 13° [49°-100°]; p = 0.008) and decreased in idiopathic cam (50° ± 8° [35°-65°]; p < 0.001) compared with normal hips (58° ± 8° [43°-74°]). Posteroinferiorly, epiphyseal angle was decreased in slip-like (eg, 8 o'clock position, 54° ± 10° [34°-74°]; p < 0.001) and postslip (44° ± 11° [23°-65°]; p < 0.001) groups and did not differ in idiopathic cam (76° ± 8° [61°-91°]; p = 0.099) compared with normal (73° ± 7° [59°-88°]) groups. Tilt angle increased in slip-like (eg, 2/8 o'clock position, 14° ± 8° [-1° to 30°]; p < 0.001) and postslip hips (29° ± 10° [9°-48°]; p < 0.001) and decreased in hips with idiopathic cam (-7° ± 5° [-17° to 4°]; p < 0.001) compared with normal (-1° ± 5° [-10° to 8°]) hips. The prevalence of a slip-like morphology was 12%. CONCLUSIONS The slip-like morphology is the second most frequent pathomorphology in hips with primary cam deformity. MRI arthrography of the hip allows identifying a slip-like morphology, which resembles hips after in situ pinning of SCFE and distinctly differs from hips with idiopathic cam. These results support previous studies reporting that SCFE might be a risk factor for cam-type FAI.
Resumo:
We performed a histopathologic analysis to assess the extent of the extracapsular extension (ECE) beyond the capsule of metastatic lymph nodes (LN) in head and neck cancer to determine appropriate clinical target volume (CTV) expansions.
Resumo:
Small lymph nodes (LN) show evidence of extracapsular extension (ECE) in a significant number of patients. This study was performed to determine the impact of ECE in LN 7 mm as compared with ECE in larger LN.
Resumo:
Surgical procedures with use of traditional techniques to reposition the proximal femoral epiphysis in the treatment of slipped capital femoral epiphysis are associated with a high rate of femoral head osteonecrosis. Therefore, most surgeons advocate in situ fixation of the slipped epiphysis with acceptance of any persistent deformity in the proximal part of the femur. This residual deformity can lead to secondary osteoarthritis resulting from femoroacetabular cam impingement.
Resumo:
To assess rotation deficits, asphericity of the femoral head and localisation of cartilage damage in the follow-up after slipped capital femoral epiphysis (SCFE).
Resumo:
Residual acetabular dysplasia of the hip in most patients can be corrected by periacetabular osteotomy. However, some patients have intraarticular abnormalities causing insufficient coverage, containment or congruency after periacetabular osteotomy, or extraarticular abnormalities that limit either acetabular correction or hip motion. For these patients, we believe an additional proximal femoral osteotomy can improve coverage, containment, congruency and/or motion.
Resumo:
There is emerging evidence that even mild slipped capital femoral epiphysis leads to early articular damage. Therefore, we have begun treating patients with mild slips and signs of impingement with in situ pinning and immediate arthroscopic osteoplasty. DESCRIPTION OF TECHNIQUES: Surgery was performed using the fracture table. After in situ pinning and diagnostic arthroscopy, peripheral compartment access was obtained and head-neck osteoplasty was completed.
Resumo:
To compare the long-term outcome of treatment with concomitant cisplatin and hyperfractionated radiotherapy versus treatment with hyperfractionated radiotherapy alone in patients with locally advanced head and neck cancer.
Resumo:
Despite rapid advances in the development of materials and techniques for endovascular intracranial aneurysm treatment, occlusion of large broad-neck aneurysms remains a challenge. Animal models featuring complex aneurysm architecture are needed to test endovascular innovations and train interventionalists.
Resumo:
Therapy of metacarpal neck fractures depending on radiographically measured palmar angulation is discussed controversially in the literature. Some authors describe normal hand function of malunited metacarpal neck fractures with a palmar angulation up to 70°; others define 30° as the uppermost limit to maintain normal hand function. However, the methods of measuring palmar angulation are not clearly defined. Here, we present a new method to measure palmar angulation using ultrasound. The aim of this prospective study is to compare the radiographic methods of measuring palmar angulation with the ultrasound method. PATIENTS/MATERIAL AND METHOD: 20 patients with a neck fracture of the metacarpals IV or V were treated either conservatively or operatively. 2 weeks after trauma or operation, an x-ray was performed. 2 examiners measured the palmar angulation on the oblique and lateral projections using 2 different methods (medullary canal and dorsal cortex methods). At the same time, the 2 examiners performed measurements of palmar angulation using ultrasound. The measurements obtained with the different methods as well as by the 2 examiners at 2 different terms were compared. Intra- and interobserver reliability of each method was calculated, and for the ultrasound method a test for accuracy of the measured angles was performed.