67 resultados para Extraction socket
Resumo:
For many years a combined analysis of pionic hydrogen and deuterium atoms has been known as a good tool to extract information on the isovector and especially on the isoscalar s-wave pN scattering length. However, given the smallness of the isoscalar scattering length, the analysis becomes useful only if the pion–deuteron scattering length is controlled theoretically to a high accuracy comparable to the experimental precision. To achieve the required few-percent accuracy one needs theoretical control over all isospin-conserving three-body pNN !pNN operators up to one order before the contribution of the dominant unknown (N†N)2pp contact term. This term appears at next-to-next-to-leading order in Weinberg counting. In addition, one needs to include isospin-violating effects in both two-body (pN) and three-body (pNN) operators. In this talk we discuss the results of the recent analysis where these isospin-conserving and -violating effects have been carefully taken into account. Based on this analysis, we present the up-to-date values of the s-wave pN scattering lengths.
Resumo:
The extraction of the finite temperature heavy quark potential from lattice QCD relies on a spectral analysis of the Wilson loop. General arguments tell us that the lowest lying spectral peak encodes, through its position and shape, the real and imaginary parts of this complex potential. Here we benchmark this extraction strategy using leading order hard-thermal loop (HTL) calculations. In other words, we analytically calculate the Wilson loop and determine the corresponding spectrum. By fitting its lowest lying peak we obtain the real and imaginary parts and confirm that the knowledge of the lowest peak alone is sufficient for obtaining the potential. Access to the full spectrum allows an investigation of spectral features that do not contribute to the potential but can pose a challenge to numerical attempts of an analytic continuation from imaginary time data. Differences in these contributions between the Wilson loop and gauge fixed Wilson line correlators are discussed. To better understand the difficulties in a numerical extraction we deploy the maximum entropy method with extended search space to HTL correlators in Euclidean time and observe how well the known spectral function and values for the real and imaginary parts are reproduced. Possible venues for improvement of the extraction strategy are discussed.
Resumo:
This study describes the development and validation of a gas chromatography-mass spectrometry (GC-MS) method to identify and quantitate phenytoin in brain microdialysate, saliva and blood from human samples. A solid-phase extraction (SPE) was performed with a nonpolar C8-SCX column. The eluate was evaporated with nitrogen (50°C) and derivatized with trimethylsulfonium hydroxide before GC-MS analysis. As the internal standard, 5-(p-methylphenyl)-5-phenylhydantoin was used. The MS was run in scan mode and the identification was made with three ion fragment masses. All peaks were identified with MassLib. Spiked phenytoin samples showed recovery after SPE of ≥94%. The calibration curve (phenytoin 50 to 1,200 ng/mL, n = 6, at six concentration levels) showed good linearity and correlation (r² > 0.998). The limit of detection was 15 ng/mL; the limit of quantification was 50 ng/mL. Dried extracted samples were stable within a 15% deviation range for ≥4 weeks at room temperature. The method met International Organization for Standardization standards and was able to detect and quantify phenytoin in different biological matrices and patient samples. The GC-MS method with SPE is specific, sensitive, robust and well reproducible, and is therefore an appropriate candidate for the pharmacokinetic assessment of phenytoin concentrations in different human biological samples.
Resumo:
Traditionally, ontologies describe knowledge representation in a denotational, formalized, and deductive way. In addition, in this paper, we propose a semiotic, inductive, and approximate approach to ontology creation. We define a conceptual framework, a semantics extraction algorithm, and a first proof of concept applying the algorithm to a small set of Wikipedia documents. Intended as an extension to the prevailing top-down ontologies, we introduce an inductive fuzzy grassroots ontology, which organizes itself organically from existing natural language Web content. Using inductive and approximate reasoning to reflect the natural way in which knowledge is processed, the ontology’s bottom-up build process creates emergent semantics learned from the Web. By this means, the ontology acts as a hub for computing with words described in natural language. For Web users, the structural semantics are visualized as inductive fuzzy cognitive maps, allowing an initial form of intelligence amplification. Eventually, we present an implementation of our inductive fuzzy grassroots ontology Thus,this paper contributes an algorithm for the extraction of fuzzy grassroots ontologies from Web data by inductive fuzzy classification.
Resumo:
This paper presents fuzzy clustering algorithms to establish a grassroots ontology – a machine-generated weak ontology – based on folksonomies. Furthermore, it describes a search engine for vaguely associated terms and aggregates them into several meaningful cluster categories, based on the introduced weak grassroots ontology. A potential application of this ontology, weblog extraction, is illustrated using a simple example. Added value and possible future studies are discussed in the conclusion.
Resumo:
This paper uses folksonomies and fuzzy clustering algorithms to establish term-relevant related results. This paper will propose a Meta search engine with the ability to search for vaguely associated terms and aggregate them into several meaningful cluster categories. The potential of the fuzzy weblog extraction is illustrated using a simple example and added value and possible future studies are discussed in the conclusion.
Resumo:
In this study, the development of a new sensitive method for the analysis of alpha-dicarbonyls glyoxal (G) and methylglyoxal (MG) in environmental ice and snow is presented. Stir bar sorptive extraction with in situ derivatization and liquid desorption (SBSE-LD) was used for sample extraction, enrichment, and derivatization. Measurements were carried out using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As part of the method development, SBSE-LD parameters such as extraction time, derivatization reagent, desorption time and solvent, and the effect of NaCl addition on the SBSE efficiency as well as measurement parameters of HPLC-ESI-MS/MS were evaluated. Calibration was performed in the range of 1–60 ng/mL using spiked ultrapure water samples, thus incorporating the complete SBSE and derivatization process. 4-Fluorobenzaldehyde was applied as internal standard. Inter-batch precision was <12 % RSD. Recoveries were determined by means of spiked snow samples and were 78.9 ± 5.6 % for G and 82.7 ± 7.5 % for MG, respectively. Instrumental detection limits of 0.242 and 0.213 ng/mL for G and MG were achieved using the multiple reaction monitoring mode. Relative detection limits referred to a sample volume of 15 mL were 0.016 ng/mL for G and 0.014 ng/mL for MG. The optimized method was applied for the analysis of snow samples from Mount Hohenpeissenberg (close to the Meteorological Observatory Hohenpeissenberg, Germany) and samples from an ice core from Upper Grenzgletscher (Monte Rosa massif, Switzerland). Resulting concentrations were 0.085–16.3 ng/mL for G and 0.126–3.6 ng/mL for MG. Concentrations of G and MG in snow were 1–2 orders of magnitude higher than in ice core samples. The described method represents a simple, green, and sensitive analytical approach to measure G and MG in aqueous environmental samples.
Resumo:
A new technique to porewater extraction from claystone employs advective displacement of the in situ porewater by traced artificial porewater. Monitoring of tracer breakthrough yields species-specific transport properties. Results for Opalinus Clay from the Mont Terri Research Laboratory indicate that the chemical disturbances due to the method are minimal, and the observed significant differences in transport properties for Br– and 2H are in agreement with existing data. Sampling times are 2–4 months, and observation of tracer breakthrough takes 12–24 months at hydraulic conductivity of ∼10-13 m/s.
Resumo:
PURPOSE The objectives of this systematic review are (1) to quantitatively estimate the esthetic outcomes of implants placed in postextraction sites, and (2) to evaluate the influence of simultaneous bone augmentation procedures on these outcomes. MATERIALS AND METHODS Electronic and manual searches of the dental literature were performed to collect information on esthetic outcomes based on objective criteria with implants placed after extraction of maxillary anterior and premolar teeth. All levels of evidence were accepted (case series studies required a minimum of 5 cases). RESULTS From 1,686 titles, 114 full-text articles were evaluated and 50 records included for data extraction. The included studies reported on single-tooth implants adjacent to natural teeth, with no studies on multiple missing teeth identified (6 randomized controlled trials, 6 cohort studies, 5 cross-sectional studies, and 33 case series studies). Considerable heterogeneity in study design was found. A meta-analysis of controlled studies was not possible. The available evidence suggests that esthetic outcomes, determined by esthetic indices (predominantly the pink esthetic score) and positional changes of the peri-implant mucosa, may be achieved for single-tooth implants placed after tooth extraction. Immediate (type 1) implant placement, however, is associated with a greater variability in outcomes and a higher frequency of recession of > 1 mm of the midfacial mucosa (eight studies; range 9% to 41% and median 26% of sites, 1 to 3 years after placement) compared to early (type 2 and type 3) implant placement (2 studies; no sites with recession > 1 mm). In two retrospective studies of immediate (type 1) implant placement with bone graft, the facial bone wall was not detectable on cone beam CT in 36% and 57% of sites. These sites had more recession of the midfacial mucosa compared to sites with detectable facial bone. Two studies of early implant placement (types 2 and 3) combined with simultaneous bone augmentation with GBR (contour augmentation) demonstrated a high frequency (above 90%) of facial bone wall visible on CBCT. Recent studies of immediate (type 1) placement imposed specific selection criteria, including thick tissue biotype and an intact facial socket wall, to reduce esthetic risk. There were no specific selection criteria for early (type 2 and type 3) implant placement. CONCLUSIONS Acceptable esthetic outcomes may be achieved with implants placed after extraction of teeth in the maxillary anterior and premolar areas of the dentition. Recession of the midfacial mucosa is a risk with immediate (type 1) placement. Further research is needed to investigate the most suitable biomaterials to reconstruct the facial bone and the relationship between long-term mucosal stability and presence/absence of the facial bone, the thickness of the facial bone, and the position of the facial bone crest.
Resumo:
AIM The aim of this prospective, randomized, controlled multicenter study was to determine the 3-year efficacy and stability of the soft and hard tissues at implants with a different geometry that were placed in fresh extraction sockets. MATERIAL AND METHODS Implants with two different configurations, cylindrical (Group A) or conical/cylindrical (Group B) were installed, and healing abutments were attached. Sixteen weeks after implant placement, subjects returned for a re-entry procedure. Prosthetic restorations were delivered 22 weeks after implant placement. Each subject was placed in a 3-year follow-up program, including examinations at yearly visits including various soft tissue and bone level parameters. RESULTS The percentage of sites that were considered inflamed during the follow-up period was stable and varied between 8.8% and 10.2%. The radiographic examinations documented improved bone levels at the final examination and the mean improvement from baseline (placement of permanent restoration; PR) amounted to 0.17 ± 0.67 mm. More than 70% (54 of 76) of the implants monitored in this study suffered no bone loss during the maintenance period. Moreover, there was an obvious "gain" of interproximal soft tissue volume and at the 3-year examination around 25% of all embrasure gaps were completely filled with "papillae". CONCLUSIONS Both conical/cylindrical and cylindrical implants placed in fresh extraction sockets allowed proper soft and hard tissue healing to occur. At both types of implants, mucosal inflammation was infrequent, marginal bone levels were maintained, and soft tissue volume increased gradually after the placement of the permanent restoration.
Resumo:
The chemical and isotopic characterization of porewater residing in the inter- and intragranular pore space of the low-permeability rock matrix is an important component with respect to the site characterization and safety assessment of potential host rocks for a radioactive waste disposal. The chemical and isotopic composition of porewater in such low permeability rocks has to be derived by indirect extraction techniques applied to naturally saturated rock material. In most of such indirect extraction techniques – especially in case of rocks of a porosity below about 2 vol.% – the original porewater concentrations are diluted and need to be back-calculated to in-situ concentrations. This requires a well-defined value for the connected porosity – accessible to different solutes under in-situ conditions. The derivation of such porosity values, as well as solute concentrations, is subject to various perturbations during drilling, core sampling, storage and experiments in the laboratory. The present study aims to demonstrate the feasibility of a variety of these techniques to charac-terize porewater and solute transport in crystalline rocks. The methods, which have been de-veloped during multiple porewater studies in crystalline environments, were applied on four core samples from the deep borehole DH-GAP04, drilled in the Kangerlussuaq area, Southwest Greenland, as part of the joint NWMO–Posiva–SKB Greenland Analogue Project (GAP). Potential artefacts that can influence the estimation of in situ porewater chemistry and isotopes, as well as their controls, are described in detail in this report, using specific examples from borehole DH-GAP04
Resumo:
A measurement of the B 0 s →J/ψϕ decay parameters, updated to include flavor tagging is reported using 4.9 fb −1 of integrated luminosity collected by the ATLAS detector from s √ =7 TeV pp collisions recorded in 2011 at the LHC. The values measured for the physical parameters are ϕ s 0.12±0.25(stat)±0.05(syst) rad ΔΓ s 0.053±0.021(stat)±0.010(syst) ps −1 Γ s 0.677±0.007(stat)±0.004(syst) ps −1 |A ∥ (0)| 2 0.220±0.008(stat)±0.009(syst) |A 0 (0)| 2 0.529±0.006(stat)±0.012(syst) δ ⊥ =3.89±0.47(stat)±0.11(syst) rad where the parameter ΔΓ s is constrained to be positive. The S -wave contribution was measured and found to be compatible with zero. Results for ϕ s and ΔΓ s are also presented as 68% and 95% likelihood contours, which show agreement with the Standard Model expectations.
Resumo:
The population of space debris increased drastically during the last years. These objects have become a great threat for active satellites. Because the relative velocities between space debris and satellites are high, space debris objects may destroy active satellites through collisions. Furthermore, collisions involving massive objects produce large number of fragments leading to significant growth of the space debris population. The long term evolution of the debris population is essentially driven by so-called catastrophic collisions. An effective remediation measure in order to stabilize the population in Low Earth Orbit (LEO) is therefore the removal of large, massive space debris. To remove these objects, not only precise orbits, but also more detailed information about their attitude states will be required. One important property of an object targeted for removal is its spin period, spin axis orientation and their change over time. Rotating objects will produce periodic brightness variations with frequencies which are related to the spin periods. Such a brightness variation over time is called a light curve. Collecting, but also processing light curves is challenging due to several reasons. Light curves may be undersampled, low frequency components due to phase angle and atmospheric extinction changes may be present, and beat frequencies may occur when the rotation period is close to a multiple of the sampling period. Depending on the method which is used to extract the frequencies, also method-specific properties have to be taken into account. The astronomical Institute of the University of Bern (AIUB) light curve database will be introduced, which contains more than 1,300 light curves acquired over more than seven years. We will discuss properties and reliability of different time series analysis methods tested and currently used by AIUB for the light curve processing. Extracted frequencies and reconstructed phases for some interesting targets, e.g. GLONASS satellites, for which also SLR data were available for the period confirmation, will be presented. Finally we will present the reconstructed phase and its evolution over time of a High-Area-to-Mass-Ratio (HAMR) object, which AIUB observed for several years.