67 resultados para Extracellular Matrix Proteins


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We previously reported that excess of deoxycorticosterone-acetate (DOCA)/salt-induced cardiac hypertrophy in the absence of hypertension in one-renin gene mice. This model allows us to study molecular mechanisms of high-salt intake in the development of cardiovascular remodeling, independently of blood pressure in a high mineralocorticoid state. In this study, we compared the effect of 5-wk low- and high-salt intake on cardiovascular remodeling and cardiac differential gene expression in mice receiving the same amount of DOCA. Differential gene and protein expression was measured by high-density cDNA microarray assays, real-time PCR and Western blot analysis in DOCA-high salt (HS) vs. DOCA-low salt (LS) mice. DOCA-HS mice developed cardiac hypertrophy, coronary perivascular fibrosis, and left ventricular dysfunction. Differential gene and protein expression demonstrated that high-salt intake upregulated a subset of genes encoding for proteins involved in inflammation and extracellular matrix remodeling (e.g., Col3a1, Col1a2, Hmox1, and Lcn2). A major subset of downregulated genes encoded for transcription factors, including myeloid differentiation primary response (MyD) genes. Our data provide some evidence that vascular remodeling, fibrosis, and inflammation are important consequences of a high-salt intake in DOCA mice. Our study suggests that among the different pathogenic factors of cardiac and vascular remodeling, such as hypertension and mineralocorticoid excess and sodium intake, the latter is critical for the development of the profibrotic and proinflammatory phenotype observed in the heart of normotensive DOCA-treated mice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Delayed fracture healing and non-unions represent rare but severe complications in orthopedic surgery. Further knowledge on the mechanisms of the bone repair process and of the development of a pseudoarthrosis is essential to predict and prevent impaired healing of fractures. The present study aimed at elucidating differences in gene expression during the repair of rigidly and non-rigidly fixed osteotomies. For this purpose, the MouseFix™ and the FlexiPlate™ systems (AO Development Institute, Davos, CH), allowing the creation of well defined osteotomies in mouse femora, were employed. A time course following the healing process of the osteotomy was performed and bones and periimplant tissues were analyzed by high-resolution X-ray, MicroCT and by histology. For the assessment of gene expression, Low Density Arrays (LDA) were done. In animals with rigid fixation, X-ray and MicroCT revealed healing of the osteotomy within 3 weeks. Using the FlexiPlate™ system, the osteotomy was still visible by X-ray after 3 weeks and a stabilizing cartilaginous callus was formed. After 4.5 weeks, the callus was remodeled and the osteotomy was, on a histological level, healed. Gene expression studies revealed levels of transcripts encoding proteins associated with inflammatory processes not to be altered in tissues from bones with rigid and non-rigid fixation, respectively. Levels of transcripts encoding proteins of the extracellular matrix and essential for bone cell functions were not increased in the rigidly fixed group when compared to controls without osteotomy. In the FlexiPlate™ group, levels of transcripts encoding the same set of genes were significantly increased 3 weeks after surgery. Expression of transcripts encoding BMPs and BMP antagonists was increased after 3 weeks in repair tissues from bones fixed with FlexiPlate™, as were inhibitors of the WNT signaling pathways. Little changes only were detected in transcript levels of tissues from rigidly fixed bones. The data of the present study suggest that rigid fixation enables accelerated healing of an experimental osteotomy as compared to non-rigid fixation. The changes in the healing process after non-rigid fixation are accompanied by an increase in the levels of transcripts encoding inhibitors of osteogenic pathways and, probably as a consequence, by temporal changes in bone matrix synthesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alcoholic liver disease (ALD) accounts for the majority of chronic liver disease in Western countries. The spectrum of ALD includes steatosis with or without fibrosis in virtually all individuals with an alcohol consumption of >80 g/day, alcoholic steatohepatitis of variable severity in 10-35% and liver cirrhosis in approximately 15% of patients. Once cirrhosis is established, there is an annual risk for hepatocellular carcinoma of 1-2%. Environmental factors such as drinking patterns, coexisting liver disease, obesity, diet composition and comedication may modify the natural course of ALD. Twin studies have revealed a substantial contribution of genetic factors to the evolution of ALD, as demonstrated by a threefold higher disease concordance between monozygotic twins and dizygotic twins. With genotyping becoming widely available, a large number of genetic case-control studies evaluating candidate gene variants coding for proteins involved in the degradation of alcohol, mediating antioxidant defence, the evolution and counteraction of necroinflammation and formation and degradation of extracellular matrix have been published with largely unconfirmed, impeached or even disproved associations. Recently, whole genome analyses of large numbers of genetic variants in several chronic liver diseases including gallstone disease, primary sclerosing cholangitis and non-alcoholic fatty liver disease (NAFLD) have identified novel yet unconsidered candidate genes. Regarding the latter, a sequence variation within the gene coding for patatin-like phospholipase encoding 3 (PNPLA3, rs738409) was found to modulate steatosis, necroinflammation and fibrosis in NAFLD. Subsequently, the same variant was repeatedly confirmed as the first robust genetic risk factor for progressive ALD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chronic allograft nephropathy, including chronic rejection, remains one of the major causes of renal allograft failure. Amongst other mediators, metzincins, such as matrix metalloproteinases (MMP), direct extracellular matrix metabolism and cell proliferation. Thus, we hypothesized, that these proteolytic enzymes are differentially regulated in chronic renal transplant rejection in rats and in human renal allograft nephropathy. Our studies demonstrated on the experimental level and in humans an overall up-regulation of MMP, tissue inhibitors of metalloproteinases (TIMP) and related enzymes as a result of rejection processes. Thus, metzincins may represent novel markers and therapeutic targets with respect to renal allograft rejection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chronic renal allograft rejection is characterized by alterations in the extracellular matrix compartment and in the proliferation of various cell types. These features are controlled, in part by the metzincin superfamily of metallo-endopeptidases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase (ADAM) and meprin. Therefore, we investigated the regulation of metzincins in the established Fisher to Lewis rat kidney transplant model. Studies were performed using frozen homogenates and paraffin sections of rat kidneys at day 0 (healthy controls) and during periods of chronic rejection at day +60 and day +100 following transplantation. The messenger RNA (mRNA) expression was examined by Affymetrix Rat Expression Array 230A GeneChip and by real-time Taqman polymerase chain reaction analyses. Protein expression was studied by zymography, Western blot analyses, and immunohistology. mRNA levels of MMPs (MMP-2/-11/-12/-14), of their inhibitors (tissue inhibitors of metalloproteinase (TIMP)-1/-2), ADAM-17 and transforming growth factor (TGF)-beta1 significantly increased during chronic renal allograft rejection. MMP-2 activity and immunohistological staining were augmented accordingly. The most important mRNA elevation was observed in the case of MMP-12. As expected, Western blot analyses also demonstrated increased production of MMP-12, MMP-14, and TIMP-2 (in the latter two cases as individual proteins and as complexes). In contrast, mRNA levels of MMP-9/-24 and meprin alpha/beta had decreased. Accordingly, MMP-9 protein levels and meprin alpha/beta synthesis and activity were downregulated significantly. Members of metzincin families (MMP, ADAM, and meprin) and of TIMPs are differentially regulated in chronic renal allograft rejection. Thus, an altered pattern of metzincins may represent novel diagnostic markers and possibly may provide novel targets for future therapeutic interventions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is generally agreed that the mechanical environment of intervertebral disc cells plays an important role in maintaining a balanced matrix metabolism. The precise mechanism by which the signals are transduced into the cells is poorly understood. Osmotic changes in the extracellular matrix (ECM) are thought to be involved. Current in-vitro studies on this topic are mostly short-term and show conflicting data on the reaction of disc cells subjected to osmotic changes which is partially due to the heterogenous and often substantially-reduced culture systems. The aim of the study was therefore to investigate the effects of cyclic osmotic loading for 4 weeks on metabolism and matrix gene expression in a full-organ intervertebral disc culture system. Intervertebral disc/endplate units were isolated from New Zealand White Rabbits and cultured either in iso-osmotic media (335 mosmol/kg) or were diurnally exposed for 8 hours to hyper-osmotic conditions (485 mosmol/kg). Cell viability, metabolic activity, matrix composition and matrix gene expression profile (collagen types I/II and aggrecan) were monitored using Live/Dead cell viability assay, tetrazolium reduction test (WST 8), proteoglycan and DNA quantification assays and quantitative PCR. The results show that diurnal osmotic stimulation did not have significant effects on proteoglycan content, cellularity and disc cell viability after 28 days in culture. However, hyperosmolarity caused increased cell death in the early culture phase and counteracted up-regulation of type I collagen gene expression in nucleus and annulus cells. Moreover, the initially decreased cellular dehydrogenase activity recovered with osmotic stimulation after 4 weeks and aggrecan gene down-regulation was delayed, although the latter was not significant according to our statistical criteria. In contrast, collagen type II did not respond to the osmotic changes and was down-regulated in both groups. In conclusion, diurnal hyper-osmotic stimulation of a whole-organ disc/endplate culture partially inhibits a matrix gene expression profile as encountered in degenerative disc disease and counteracts cellular metabolic hypo-activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Collagen is a major component of extracellular matrix and a wide variety of types exist. Cells recognise collagen in different ways depending on sequence and structure. They can recognise predominantly primary sequence, they may require triple-helical structure or they can require fibrillar structures. Since collagens are major constituents of the subendothelium that determine the thrombogenicity of the injured or pathological vessel wall, a major role is induction of platelet activation and aggregation as the start of repair processes. Platelets have at least two direct and one indirect (via von Willebrand factor) receptors for collagen, and collagen has specific recognition motifs for these receptors. These receptors and recognition motifs are under intensive investigation in the search for possible methods to control platelet activation in vivo. A wide range of proteins has been identified and, in part, characterised from both haematophageous insects and invertebrates but also from snake venoms that inhibit platelet activation by collagen or induce platelet activation via collagen receptors on platelets. These will provide model systems to test the effect of inhibition of specific collagen-platelet receptor interactions for both effectiveness as well as for side effects and should provide assay systems for the development of small molecule inhibitors. Since platelet inhibitors for long-term prophylaxis of cardiovascular diseases are still in clinical trials there are many unanswered questions about long-term effects both positive and negative. The major problem which still has to be definitively solved about these alternative approaches to inhibition of platelet activation is whether they will show advantages in terms of dose-response curves while offering decreased risks of bleeding problems. Preliminary studies would seem to suggest that this is indeed the case.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIMS: Cardiac myopathies are the second leading cause of death in patients with Duchenne and Becker muscular dystrophy, the two most common and severe forms of a disabling striated muscle disease. Although the genetic defect has been identified as mutations of the dystrophin gene, very little is known about the molecular and cellular events leading to progressive cardiac muscle damage. Dystrophin is a protein linking the cytoskeleton to a complex of transmembrane proteins that interact with the extracellular matrix. The fragility of the cell membrane resulting from the lack of dystrophin is thought to cause an excessive susceptibility to mechanical stress. Here, we examined cellular mechanisms linking the initial membrane damage to the dysfunction of dystrophic heart. METHODS AND RESULTS: Cardiac ventricular myocytes were enzymatically isolated from 5- to 9-month-old dystrophic mdx and wild-type (WT) mice. Cells were exposed to mechanical stress, applied as osmotic shock. Stress-induced cytosolic and mitochondrial Ca(2+) signals, production of reactive oxygen species (ROS), and mitochondrial membrane potential were monitored with confocal microscopy and fluorescent indicators. Pharmacological tools were used to scavenge ROS and to identify their possible sources. Osmotic shock triggered excessive cytosolic Ca(2+) signals, often lasting for several minutes, in 82% of mdx cells. In contrast, only 47% of the WT cardiomyocytes responded with transient and moderate intracellular Ca(2+) signals. On average, the reaction was 6-fold larger in mdx cells. Removal of extracellular Ca(2+) abolished these responses, implicating Ca(2+) influx as a trigger for abnormal Ca(2+) signalling. Our further experiments revealed that osmotic stress in mdx cells produced an increase in ROS production and mitochondrial Ca(2+) overload. The latter was followed by collapse of the mitochondrial membrane potential, an early sign of cell death. CONCLUSION: Overall, our findings reveal that excessive intracellular Ca(2+) signals and ROS generation link the initial sarcolemmal injury to mitochondrial dysfunctions. The latter possibly contribute to the loss of functional cardiac myocytes and heart failure in dystrophy. Understanding the sequence of events of dystrophic cell damage and the deleterious amplification systems involved, including several positive feed-back loops, may allow for a rational development of novel therapeutic strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Matrilins are oligomeric extracellular matrix adaptor proteins mediating interactions between collagen fibrils and other matrix constituents. All four matrilins are expressed in cartilage and mutations in the human gene encoding matrilin-3 (MATN3) are associated with different forms of chondrodysplasia. Surprisingly, however, Matn3-null as well as Matn1- and Matn2-null mice do not show an overt skeletal phenotype, suggesting a dominant negative pathomechanism for the human disorders and redundancy/compensation among the family members in the knock-out situation. Here, we show that mice lacking both matrilin-1 and matrilin-3 develop an apparently normal skeleton, but exhibit biochemical and ultrastructural abnormalities of the knee joint cartilage. At the protein level, an altered SDS-PAGE band pattern and a clear up-regulation of the homotrimeric form of matrilin-4 were evident in newborn Matn1/Matn3 and Matn1 knock-out mice, but not in Matn3-null mice. The ultrastructure of the cartilage matrix after conventional chemical fixation was grossly normal; however, electron microscopy of high pressure frozen and freeze-substituted samples, revealed two consistent observations: 1) moderately increased collagen fibril diameters throughout the epiphysis and the growth plate in both single and double mutants; and 2) increased collagen volume density in Matn1(-/-)/Matn3(-/-) and Matn3(-/-) mice. Taken together, our results demonstrate that matrilin-1 and matrilin-3 modulate collagen fibrillogenesis in cartilage and provide evidence that biochemical compensation might exist between matrilins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The astacins are a subfamily of the metzincin superfamily of metalloproteinases. The first to be characterized was the crayfish enzyme astacin. To date more than 200 members of this family have been identified in species ranging from bacteria to humans. Astacins are involved in developmental morphogenesis, matrix assembly, tissue differentiation and digestion. Family members include the procollagen C-proteinase (BMP1, bone morphogenetic protein 1), tolloid and mammalian tolloid-like, HMP (Hydra vulgaris metalloproteinase), sea urchin BP10 (blastula protein) and SPAN (Strongylocentrotus purpuratus astacin), the 'hatching' subfamily comprising alveolin, ovastacin, LCE, HCE ('low' and 'high' choriolytic enzymes), nephrosin (from carp head kidney), UVS.2 from frog, and the meprins. In the human and mouse genomes, there are six astacin family genes (two meprins, three BMP1/tolloid-like, one ovastacin), but in Caenorhabditis elegans there are 40. Meprins are the only astacin proteinases that function on the membrane and extracellularly by virtue of the fact that they can be membrane-bound or secreted. They are unique in their domain structure and covalent subunit dimerization, oligomerization propensities, and expression patterns. They are normally highly regulated at the transcriptional and post-translational levels, localize to specific membranes or extracellular spaces, and can hydrolyse biologically active peptides, cytokines, extracellular matrix (ECM) proteins and cell-surface proteins. The in vivo substrates of meprins are unknown, but the abundant expression of these proteinases in the epithelial cells of the intestine, kidney and skin provide clues to their functions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alveoli are formed in the lung by the insertion of secondary tissue folds, termed septa, which are subsequently remodeled to form the mature alveolar wall. Secondary septation requires interplay between three cell types: endothelial cells forming capillaries, contractile interstitial myofibroblasts, and epithelial cells. Here, we report that postnatal lung alveolization critically requires ephrinB2, a ligand for Eph receptor tyrosine kinases expressed by the microvasculature. Mice homozygous for the hypomorphic knockin allele ephrinB2DeltaV/DeltaV, encoding mutant ephrinB2 with a disrupted C-terminal PDZ interaction motif, show severe postnatal lung defects including an almost complete absence of lung alveoli and abnormal and disorganized elastic matrix. Lung alveolar formation is not sensitive to loss of ephrinB2 cytoplasmic tyrosine phosphorylation sites. Postnatal day 1 mutant lungs show extracellular matrix alterations without differences in proportions of major distal cell populations. We conclude that lung alveolar formation relies on endothelial ephrinB2 function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metzincins, such as matrix metalloproteases (MMP), and extracellular matrix (ECM) proteins are differentially regulated in inflammation. We hypothesised that metzincins are also dysregulated in experimental acute cardiac allograft rejection. We investigated the Dark Agouti-to-Lewis (DA-to-Lew) rat model of acute cardiac allograft rejection. Cyclosporine (CsA) (7.5 mg/kg/d) was given from transplantation to sacrifice (day +5). At that time, mRNA levels were analysed by Affymetrix genechip and quantitative reverse transcription polymerase chain reaction (qRTPCR). MMP protein and activities were analysed by immunohistology, fluorometry, zymography and Western blots. In untreated rejected DA allografts, mRNA levels of MMP-2/-7/-9/-/12-/14, a disintegrin and metalloprotease (ADAM)-17, tissue inhibitor of metalloprotease (TIMP)-1/-3 were increased, whereas MMP-11/-16/-24 and TIMP-2/-4 were lowered compared to native DA hearts. With respect to these untreated allografts, CsA lowered mRNA levels of MMP-7, TIMP-1/-3 (TIMP-2/-4 remained relatively low) and ADAM17, but augmented mRNA levels of MMP-11/-16/-23 and of many ECM genes. Immunohistology showed increased staining of MMP-2 in acute rejection (AR). Overall MMP activity was augmented in both transplanted groups, but CsA reduced MMP-9 activity and MMP-14 production. Taken together, MMP and TIMP were upregulated during acute AR. CsA ameliorated histology of rejection but showed potential pro-fibrotic effects. Thus, MMP and TIMP may play a role in acute cardiac allograft rejection, and beneficial modification of the MMP-ECM balance requires interventions beyond CsA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND Bone-to-tendon healing after rotator cuff repairs is mainly impaired by poor tissue quality. The tenocytes of chronic rotator cuff tendon tears are not able to synthesize normal fibrocartilaginous extracellular matrix (ECM). We hypothesized that in the presence of platelet-released growth factors (PRGF), tenocytes from chronically retracted rotator cuff tendons proliferate and synthesize the appropriate ECM proteins. MATERIALS AND METHODS Tenocytes from 8 patients with chronic rotator cuff tears were cultured for 4 weeks in 2 different media: standard medium (Iscove's Modified Dulbecco's Media + 10% fetal calf serum + 1% nonessential amino acids + 0.5 μg/mL ascorbic acid) and media with an additional 10% PRGF. Cell proliferation was assessed at 7, 14, 21, and 28 days. Messenger (m)RNA levels of collagens I, II, and X, decorin, biglycan, and aggrecan were analyzed using real time reverse-transcription polymerase chain reaction. Immunocytochemistry was also performed. RESULTS The proliferation rate of tenocytes was significantly higher at all time points when cultured with PRGF. At 21 days, the mRNA levels for collagens I, II, and X, decorin, aggrecan, and biglycan were significantly higher in the PRGF group. The mRNA data were confirmed at protein level by immunocytochemistry. CONCLUSIONS PRGFs enhance tenocyte proliferation in vitro and promote synthesis of ECM to levels similar to those found with insertion of the normal human rotator cuffs. CLINICAL RELEVANCE Biologic augmentation of repaired rotator cuffs with PRGF may enhance the properties of the repair tissue. However, further studies are needed to determine if application of PRGF remains safe and effective in long-term clinical studies. LEVEL OF EVIDENCE Basic Science Study, Cell Biology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CCN2 (connective tissue growth factor (CTGF/CCN2)) is a matricellular protein that utilizes integrins to regulate cell proliferation, migration and survival. The loss of CCN2 leads to perinatal lethality resulting from a severe chondrodysplasia. Upon closer inspection of Ccn2 mutant mice, we observed defects in extracellular matrix (ECM) organization and hypothesized that the severe chondrodysplasia caused by loss of CCN2 might be associated with defective chondrocyte survival. Ccn2 mutant growth plate chondrocytes exhibited enlarged endoplasmic reticula (ER), suggesting cellular stress. Immunofluorescence analysis confirmed elevated stress in Ccn2 mutants, with reduced stress observed in Ccn2 overexpressing transgenic mice. In vitro studies revealed that Ccn2 is a stress responsive gene in chondrocytes. The elevated stress observed in Ccn2-/- chondrocytes is direct and mediated in part through integrin α5. The expression of the survival marker NFκB and components of the autophagy pathway were decreased in Ccn2 mutant growth plates, suggesting that CCN2 may be involved in mediating chondrocyte survival. These data demonstrate that absence of a matricellular protein can result in increased cellular stress and highlight a novel protective role for CCN2 in chondrocyte survival. The severe chondrodysplasia caused by the loss of CCN2 may be due to increased chondrocyte stress and defective activation of autophagy pathways, leading to decreased cellular survival. These effects may be mediated through nuclear factor κB (NFκB) as part of a CCN2/integrin/NFκB signaling cascade.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Progressive interstitial fibrosis and tubular atrophy (IF/TA) is a leading cause of chronic allograft dysfunction. Increased extracellular matrix remodeling regulated by matrix metalloproteases (MMPs) and their inhibitors (TIMPs) has been implicated in the development of IF/TA. The aim of this study was to investigate whether urinary/serum MMPs/TIMPs correlate with subclinical IF/TA detected in surveillance biopsies within the first 6months post-transplant. We measured eight different MMPs/TIMPs simultaneously in urine and serum samples from patients classified as normal histology (n=15), IF/TA 1 (n=15) and IF/TA 2-3 (n=10). There was no difference in urinary MMPs/TIMPs among the three groups, and only 1/8 serum MMPs/TIMPs (i.e. MMP-1) was significantly elevated in biopsies with IF/TA 2-3 (p=0.01). In addition, urinary/serum MMPs/TIMPs were not different between surveillance biopsies demonstrating an early development of IF/TA (i.e. delta IF/TA≥1 compared to a previous biopsy obtained three months before; n=11) and stable grade of IF/TA (i.e. delta IF/TA=0; n=20). Next, we investigated whether urinary/serum MMP/TIMP levels are elevated during acute subclinical tubulitis in surveillance biopsies obtained within the first 6months post-transplant (n=25). Compared to biopsies with normal histology, serum MMPs/TIMPs were not different; however, all urinary MMP/TIMP levels were numerically higher during subclinical tubulitis (MMP-1, MMP-7, TIMP-1 with p≤0.04). We conclude that urinary/serum MMPs/TIMPs do hardly correlate with existing or early developing IF/TA in surveillance biopsies obtained within the first 6months post-transplant. This could be explained by the dynamic process of extracellular matrix remodeling, which seems to be active during acute tubulo-interstitial injury/inflammation, but not in quiescent IF/TA.