58 resultados para Explicit finite element model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Article preview View full access options BoneKEy Reports | Review Print Email Share/bookmark Finite element analysis for prediction of bone strength Philippe K Zysset, Enrico Dall'Ara, Peter Varga & Dieter H Pahr Affiliations Corresponding author BoneKEy Reports (2013) 2, Article number: 386 (2013) doi:10.1038/bonekey.2013.120 Received 03 January 2013 Accepted 25 June 2013 Published online 07 August 2013 Article tools Citation Reprints Rights & permissions Abstract Abstract• References• Author information Finite element (FE) analysis has been applied for the past 40 years to simulate the mechanical behavior of bone. Although several validation studies have been performed on specific anatomical sites and load cases, this study aims to review the predictability of human bone strength at the three major osteoporotic fracture sites quantified in recently completed in vitro studies at our former institute. Specifically, the performance of FE analysis based on clinical computer tomography (QCT) is compared with the ones of the current densitometric standards, bone mineral content, bone mineral density (BMD) and areal BMD (aBMD). Clinical fractures were produced in monotonic axial compression of the distal radii, vertebral sections and in side loading of the proximal femora. QCT-based FE models of the three bones were developed to simulate as closely as possible the boundary conditions of each experiment. For all sites, the FE methodology exhibited the lowest errors and the highest correlations in predicting the experimental bone strength. Likely due to the improved CT image resolution, the quality of the FE prediction in the peripheral skeleton using high-resolution peripheral CT was superior to that in the axial skeleton with whole-body QCT. Because of its projective and scalar nature, the performance of aBMD in predicting bone strength depended on loading mode and was significantly inferior to FE in axial compression of radial or vertebral sections but not significantly inferior to FE in side loading of the femur. Considering the cumulated evidence from the published validation studies, it is concluded that FE models provide the most reliable surrogates of bone strength at any of the three fracture sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Finite element models of augmented vertebral bodies require a realistic modelling of the cement infiltrated region. Most methods published so far used idealized cement shapes or oversimplified material models for the augmented region. In this study, an improved, anatomy-specific, homogenized finite element method was developed and validated to predict the apparent as well as the local mechanical behavior of augmented vertebral bodies. Methods Forty-nine human vertebral body sections were prepared by removing the cortical endplates and scanned with high-resolution peripheral quantitative CT before and after injection of a standard and a low-modulus bone cement. Forty-one specimens were tested in compression to measure stiffness, strength and contact pressure distributions between specimens and loading-plates. From the remaining eight, fourteen cylindrical specimens were extracted from the augmented region and tested in compression to obtain material properties. Anatomy-specific finite element models were generated from the CT data. The models featured element-specific, density-fabric-based material properties, damage accumulation, real cement distributions and experimentally determined material properties for the augmented region. Apparent stiffness and strength as well as contact pressure distributions at the loading plates were compared between simulations and experiments. Findings The finite element models were able to predict apparent stiffness (R2 > 0.86) and apparent strength (R2 > 0.92) very well. Also, the numerically obtained pressure distributions were in reasonable quantitative (R2 > 0.48) and qualitative agreement with the experiments. Interpretation The proposed finite element models have proven to be an accurate tool for studying the apparent as well as the local mechanical behavior of augmented vertebral bodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scaphoid is the most frequently fractured carpal bone. When investigating fixation stability, which may influence healing, knowledge of forces and moments acting on the scaphoid is essential. The aim of this study was to evaluate cartilage contact forces acting on the intact scaphoid in various functional wrist positions using finite element modeling. A novel methodology was utilized as an attempt to overcome some limitations of earlier studies, namely, relatively coarse imaging resolution to assess geometry, assumption of idealized cartilage thicknesses and neglected cartilage pre-stresses in the unloaded joint. Carpal bone positions and articular cartilage geometry were obtained independently by means of high resolution CT imaging and incorporated into finite element (FE) models of the human wrist in eight functional positions. Displacement driven FE analyses were used to resolve inter-penetration of cartilage layers, and provided contact areas, forces and pressure distribution for the scaphoid bone. The results were in the range reported by previous studies. Novel findings of this study were: (i) cartilage thickness was found to be heterogeneous for each bone and vary considerably between carpal bones; (ii) this heterogeneity largely influenced the FE results and (iii) the forces acting on the scaphoid in the unloaded wrist were found to be significant. As major limitations, accuracy of the method was found to be relatively low, and the results could not be compared to independent experiments. The obtained results will be used in a following study to evaluate existing and recently developed screws used to fix scaphoid fractures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To compare biomechanical rupture risk parameters of asymptomatic, symptomatic and ruptured abdominal aortic aneurysms (AAA) using finite element analysis (FEA). STUDY DESIGN Retrospective biomechanical single center analysis of asymptomatic, symptomatic, and ruptured AAAs. Comparison of biomechanical parameters from FEA. MATERIALS AND METHODS From 2011 to 2013 computed tomography angiography (CTA) data from 30 asymptomatic, 15 symptomatic, and 15 ruptured AAAs were collected consecutively. FEA was performed according to the successive steps of AAA vessel reconstruction, segmentation and finite element computation. Biomechanical parameters Peak Wall Rupture Risk Index (PWRI), Peak Wall Stress (PWS), and Rupture Risk Equivalent Diameter (RRED) were compared among the three subgroups. RESULTS PWRI differentiated between asymptomatic and symptomatic AAAs (p < .0004) better than PWS (p < .1453). PWRI-dependent RRED was higher in the symptomatic subgroup compared with the asymptomatic subgroup (p < .0004). Maximum AAA external diameters were comparable between the two groups (p < .1355). Ruptured AAAs showed the highest values for external diameter, total intraluminal thrombus volume, PWS, RRED, and PWRI compared with asymptomatic and symptomatic AAAs. In contrast with symptomatic and ruptured AAAs, none of the asymptomatic patients had a PWRI value >1.0. This threshold value might identify patients at imminent risk of rupture. CONCLUSIONS From different FEA derived parameters, PWRI distinguishes most precisely between asymptomatic and symptomatic AAAs. If elevated, this value may represent a negative prognostic factor for asymptomatic AAAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Denosumab reduced the incidence of new fractures in postmenopausal women with osteoporosis by 68% at the spine and 40% at the hip over 36 months compared with placebo in the FREEDOM study. This efficacy was supported by improvements from baseline in vertebral (18.2%) strength in axial compression and femoral (8.6%) strength in sideways fall configuration at 36 months, estimated in Newtons by an established voxel-based finite element (FE) methodology. Since FE analyses rely on the choice of meshes, material properties, and boundary conditions, the aim of this study was to independently confirm and compare the effects of denosumab on vertebral and femoral strength during the FREEDOM trial using an alternative smooth FE methodology. Unlike the previous FE study, effects on femoral strength in physiological stance configuration were also examined. QCT data for the proximal femur and two lumbar vertebrae were analyzed by smooth FE methodology at baseline, 12, 24, and 36 months for 51 treated (denosumab) and 47 control (placebo) subjects. QCT images were segmented and converted into smooth FE models to compute bone strength. L1 and L2 vertebral bodies were virtually loaded in axial compression and the proximal femora in both fall and stance configurations. Denosumab increased vertebral body strength by 10.8%, 14.0%, and 17.4% from baseline at 12, 24, and 36 months, respectively (p < 0.0001). Denosumab also increased femoral strength in the fall configuration by 4.3%, 5.1%, and 7.2% from baseline at 12, 24, and 36 months, respectively (p < 0.0001). Similar improvements were observed in the stance configuration with increases of 4.2%, 5.2%, and 5.2% from baseline (p ≤ 0.0007). Differences between the increasing strengths with denosumab and the decreasing strengths with placebo were significant starting at 12 months (vertebral and femoral fall) or 24 months (femoral stance). Using an alternative smooth FE methodology, we confirmed the significant improvements in vertebral body and proximal femur strength previously observed with denosumab. Estimated increases in strength with denosumab and decreases with placebo were highly consistent between both FE techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of quantitative computed tomography (QCT)-based finite element analysis of the spine and hip. The ISCD task force for QCT reviewed the evidence for clinical applications and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here we discuss the agreed upon ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Parts I and III address the clinical use of QCT of the hip, and the clinical feasibility of existing techniques for opportunistic screening of osteoporosis using CT scans obtained for other diagnosis such as colonography was addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone's material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of thirteen femora predicted the strength (R2=0.84, SEE=540 N, 16.2%), stiffness (R2=0.82, SEE=233 N/mm, 18.0%) and fracture energy (R2=0.72, SEE=3.85 J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitinol stent oversizing is frequently performed in peripheral arteries to ensure a desirable lumen gain. However, the clinical effect of mis-sizing remains controversial. The goal of this study was to provide a better understanding of the structural and hemodynamic effects of Nitinol stent oversizing. Five patient-specific numerical models of non-calcified popliteal arteries were developed to simulate the deployment of Nitinol stents with oversizing ratios ranging from 1.1 to 1.8. In addition to arterial biomechanics, computational fluid dynamics methods were adopted to simulate the physiological blood flow inside the stented arteries. Results showed that stent oversizing led to a limited increase in the acute lumen gain, albeit at the cost of a significant increase in arterial wall stresses. Furthermore, localized areas affected by low Wall Shear Stress increased with higher oversizing ratios. Stents were also negatively impacted by the procedure as their fatigue safety factors gradually decreased with oversizing. These adverse effects to both the artery walls and stents may create circumstances for restenosis. Although the ideal oversizing ratio is stent-specific, this study showed that Nitinol stent oversizing has a very small impact on the immediate lumen gain, which contradicts the clinical motivations of the procedure.