50 resultados para Ecosystem-based Management
Resumo:
BACKGROUND Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are the most frequent causes of bacterial sexually transmitted infections (STIs). Management strategies that reduce losses in the clinical pathway from infection to cure might improve STI control and reduce complications resulting from lack of, or inadequate, treatment. OBJECTIVES To assess the effectiveness and safety of home-based specimen collection as part of the management strategy for Chlamydia trachomatis and Neisseria gonorrhoeae infections compared with clinic-based specimen collection in sexually-active people. SEARCH METHODS We searched the Cochrane Sexually Transmitted Infections Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and LILACS on 27 May 2015, together with the World Health Organization International Clinical Trials Registry (ICTRP) and ClinicalTrials.gov. We also handsearched conference proceedings, contacted trial authors and reviewed the reference lists of retrieved studies. SELECTION CRITERIA Randomized controlled trials (RCTs) of home-based compared with clinic-based specimen collection in the management of C. trachomatis and N. gonorrhoeae infections. DATA COLLECTION AND ANALYSIS Three review authors independently assessed trials for inclusion, extracted data and assessed risk of bias. We contacted study authors for additional information. We resolved any disagreements through consensus. We used standard methodological procedures recommended by Cochrane. The primary outcome was index case management, defined as the number of participants tested, diagnosed and treated, if test positive. MAIN RESULTS Ten trials involving 10,479 participants were included. There was inconclusive evidence of an effect on the proportion of participants with index case management (defined as individuals tested, diagnosed and treated for CT or NG, or both) in the group with home-based (45/778, 5.8%) compared with clinic-based (51/788, 6.5%) specimen collection (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.60 to 1.29; 3 trials, I² = 0%, 1566 participants, moderate quality). Harms of home-based specimen collection were not evaluated in any trial. All 10 trials compared the proportions of individuals tested. The results for the proportion of participants completing testing had high heterogeneity (I² = 100%) and were not pooled. We could not combine data from individual studies looking at the number of participants tested because the proportions varied widely across the studies, ranging from 30% to 96% in home group and 6% to 97% in clinic group (low-quality evidence). The number of participants with positive test was lower in the home-based specimen collection group (240/2074, 11.6%) compared with the clinic-based group (179/967, 18.5%) (RR 0.72, 95% CI 0.61 to 0.86; 9 trials, I² = 0%, 3041 participants, moderate quality). AUTHORS' CONCLUSIONS Home-based specimen collection could result in similar levels of index case management for CT or NG infection when compared with clinic-based specimen collection. Increases in the proportion of individuals tested as a result of home-based, compared with clinic-based, specimen collection are offset by a lower proportion of positive results. The harms of home-based specimen collection compared with clinic-based specimen collection have not been evaluated. Future RCTs to assess the effectiveness of home-based specimen collection should be designed to measure biological outcomes of STI case management, such as proportion of participants with negative tests for the relevant STI at follow-up.
Resumo:
Ensuring sustainable use of natural resources is crucial for maintaining the basis for our livelihoods. With threats from climate change, disputes over water, biodiversity loss, competing claims on land, and migration increasing worldwide, the demands for sustainable land management (SLM) practices will only increase in the future. For years already, various national and international organizations (GOs, NGOs, donors, research institutes, etc.) have been working on alternative forms of land management. And numerous land users worldwide – especially small farmers – have been testing, adapting, and refining new and better ways of managing land. All too often, however, the resulting SLM knowledge has not been sufficiently evaluated, documented and shared. Among other things, this has often prevented valuable SLM knowledge from being channelled into evidence-based decision-making processes. Indeed, proper knowledge management is crucial for SLM to reach its full potential. Since more than 20 years, the international WOCAT network documents and promotes SLM through its global platform. As a whole, the WOCAT methodology comprises tools for documenting, evaluating, and assessing the impact of SLM practices, as well as for knowledge sharing, analysis and use for decision support in the field, at the planning level, and in scaling up identified good practices. In early 2014, WOCAT’s growth and ongoing improvement culminated in its being officially recognized by the UNCCD as the primary recommended database for SLM best practices. Over the years, the WOCAT network confirmed that SLM helps to prevent desertification, to increase biodiversity, enhance food security and to make people less vulnerable to the effects of climate variability and change. In addi- tion, it plays an important role in mitigating climate change through improving soil organic matter and increasing vegetation cover. In-depth assessments of SLM practices from desertification sites enabled an evaluation of how SLM addresses prevalent dryland threats. The impacts mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Among others, favourable local-scale cost-benefit relationships of SLM practices play a crucial role in their adoption. An economic analysis from the WOCAT database showed that land users perceive a large majority of the technologies as having benefits that outweigh costs in the long term. The high investment costs associated with some practices may constitute a barrier to adoption, however, where appropriate, short-term support for land users can help to promote these practices. The increased global concerns on climate change, disaster risks and food security redirect attention to, and trigger more funds for SLM. To provide the necessary evidence-based rationale for investing in SLM and to reinforce expert and land users assessments of SLM impacts, more field research using inter- and transdisciplinary approaches is needed. This includes developing methods to quantify and value ecosystem services, both on-site and off-site, and assess the resilience of SLM practices, as currently aimed at within the EU FP7 projects CASCADE and RECARE.
Resumo:
Biophysical restoration or rehabilitation measures of land have demonstrated to be effective in many scientific projects and small-scale environmental experiments. However circumstances such as poverty, weak policies, or inefficient scientific knowledge transmission can hinder the effective upscaling of land restoration and the long term maintenance of proven sustainable use of soil and water. This may be especially worrisome in lands with harsh environmental conditions. This review covers recent efforts in landscape restoration and rehabilitation with a functional perspective aiming to simultaneously achieve ecosystem sustainability, economic efficiency, and social wellbeing. Water management and rehabilitation of ecosystem services in croplands, rangelands, forests, and coastlands are reviewed. The joint analysis of such diverse ecosystems provides a wide perspective to determine: (i) multifaceted impacts on biophysical and socio-economic factors; and (ii) elements influencing effective upscaling of sustainable land management practices. One conclusion can be highlighted: voluntary adoption is based on different pillars, i.e. external material and economic support, and spread of success information at the local scale to demonstrate the multidimensional benefits of sustainable land management. For the successful upscaling of land management, more attention must be paid to the social system from the first involvement stage, up to the long term maintenance.
Resumo:
Despite numerous research efforts over the last decades, integrating the concept of ecosystem servicesinto land management decision-making continues to pose considerable challenges. Researchers havedeveloped many different frameworks to operationalize the concept, but these are often specific to acertain issue and each has their own definitions and understandings of particular terms. Based on acomprehensive review of the current scientific debate, the EU FP7 project RECARE proposes an adaptedframework for soil-related ecosystem services that is suited for practical application in the preventionand remediation of soil degradation across Europe. We have adapted existing frameworks by integratingcomponents from soil science while attempting to introduce a consistent terminology that is understand-able to a variety of stakeholders. RECARE aims to assess how soil threats and prevention and remediationmeasures affect ecosystem services. Changes in the natural capital’s properties influence soil processes,which support the provision of ecosystem services. The benefits produced by these ecosystem servicesare explicitly or implicitly valued by individuals and society. This can influence decision- and policymak-ing at different scales, potentially leading to a societal response, such as improved land management.The proposed ecosystem services framework will be applied by the RECARE project in a transdisciplinaryprocess. It will assist in singling out the most beneficial land management measures and in identifyingtrade-offs and win–win situations resulting from and impacted by European policies. The framework thusreflects the specific contributions soils make to ecosystem services and helps reveal changes in ecosystemservices caused by soil management and policies impacting on soil. At the same time, the framework issimple and robust enough for practical application in assessing soil threats and their management withstakeholders at various levels.
Resumo:
Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective.