146 resultados para Echocardiography
Resumo:
High-altitude destinations are visited by increasing numbers of children and adolescents. High-altitude hypoxia triggers pulmonary hypertension that in turn may have adverse effects on cardiac function and may induce life-threatening high-altitude pulmonary edema (HAPE), but there are limited data in this young population. We, therefore, assessed in 118 nonacclimatized healthy children and adolescents (mean ± SD; age: 11 ± 2 yr) the effects of rapid ascent to high altitude on pulmonary artery pressure and right and left ventricular function by echocardiography. Pulmonary artery pressure was estimated by measuring the systolic right ventricular to right atrial pressure gradient. The echocardiography was performed at low altitude and 40 h after rapid ascent to 3,450 m. Pulmonary artery pressure was more than twofold higher at high than at low altitude (35 ± 11 vs. 16 ± 3 mmHg; P < 0.0001), and there existed a wide variability of pulmonary artery pressure at high altitude with an estimated upper 95% limit of 52 mmHg. Moreover, pulmonary artery pressure and its altitude-induced increase were inversely related to age, resulting in an almost twofold larger increase in the 6- to 9- than in the 14- to 16-yr-old participants (24 ± 12 vs. 13 ± 8 mmHg; P = 0.004). Even in children with the most severe altitude-induced pulmonary hypertension, right ventricular systolic function did not decrease, but increased, and none of the children developed HAPE. HAPE appears to be a rare event in this young population after rapid ascent to this altitude at which major tourist destinations are located.
Resumo:
The aim of this study was to test the hypothesis that ear oximetry immediately after the release of a sustained Valsalva maneuver accurately detects patent foramen ovale (PFO). One hundred sixty-five scuba divers underwent transesophageal echocardiography (TEE; reference method) for PFO assessment. Ear oximetry of the right earlobe was performed in a different room within a time frame of 2 hours before or after TEE. The subject and the oximetry operator were unaware of the results of TEE. Oxygen saturation (SO(2)) measurements were obtained at baseline and during the release phase of 4 Valsalva maneuvers within 10 minutes, and the average SO(2) change (SO(2) at baseline minus SO(2) at Valsalva release) was determined as the primary study end point. One hundred seventeen divers had no PFO, and 48 (29%) had PFO by TEE (mean age 39 ± 8 years). The average SO(2) change was 0.79 ± 1.13% (i.e., a slight absolute SO(2) decrease in response to the Valsalva maneuver) in the group without PFO and 1.67 ± 1.19% in the PFO group (p <0.0001). Using receiver-operating characteristic curve analysis, a PFO as defined by TEE could be detected at a threshold of a Valsalva-induced decrease in SO(2) of ≥0.825 percentage points in comparison to baseline (sensitivity 0.756, specificity 0.706, area under the receiver-operating characteristic curve 0.763, p <0.0001, negative predictive value 0.882). In conclusion, the entirely noninvasive method of ear oximetry in response to repetitive Valsalva maneuvers is accurate and useful as a screening method for the detection of a PFO, as shown in this study of divers.
Resumo:
The safety of percutaneous transapical mitral paravalvular leak (PVL) closure could potentially be enhanced by device closure of the ventricular access site. Percutaneous transapical PVL closure was performed. The 9F delivery sheath was pulled back, and a 6-mm Amplatzer muscular ventricular septal defect occluder was deployed at the apical puncture site. Immediate hemostasis was achieved. Total hospitalization was 9 days. New York Heart Association functional class was improved, hemoglobin and haptoglobin rose, while lactate dehydrogenase fell. Follow-up fluoroscopy and transthoracic echocardiography revealed a good functional result. Closure of the apical access site by means of an Amplatzer muscular ventricular septal defect occluder is feasible.
Resumo:
In adults with congenital heart disease and a systemic right ventricle, subaortic ventricular systolic dysfunction is common. Echocardiographic assessment of systolic right ventricular (RV) function in these patients is important but challenging. The aim of the present study was to assess the reliability of conventional echocardiographic RV functional parameters to quantify the systolic performance of a subaortic right ventricle. We compared 56 contemporary echocardiograms and cardiac magnetic resonance studies in 37 adults, aged 26.9 ± 7.4 years, with complete transposition and a subaortic right ventricle. The fractional area change (FAC), lateral tricuspid annular plane systolic excursion, lateral RV systolic motion velocities by tissue Doppler, RV myocardial performance index, and the rate of systolic RV pressure increase (dp/dt) measured across the tricuspid regurgitant jet were assessed by echocardiography and correlated with the cardiac magnetic resonance-derived RV ejection fraction (EF). The mean RVEF was 48.0 ± 7.8%. FAC (r(2) = 0.206, p = 0.001) and dp/dt (r(2) = 0.173, p = 0.009) significantly correlated with RVEF, and the other nongeometric echocardiographic parameters failed to show a significant correlation with RVEF by linear regression analysis. FAC <33% and dp/dt <1,000 mm Hg/s identified a RVEF of <50% with a sensitivity of 77% and 69% and a specificity of 58% and 87%, respectively. In conclusion, in patients with a systemic right ventricle, routine nongeometric echocardiographic parameters of RV function correlated weakly with cardiac magnetic resonance-derived EF. RV FAC and the measurement of the rate of systolic RV pressure increase (dp/dt) should be preferentially used to assess systemic systolic function in adult patients with a subaortic right ventricle.
Resumo:
Persistent left superior vena cava (LSVC) is a relatively frequent finding in congenital cardiac malformation. The scope of the study was to analyze the timing of diagnosis of persistent LSVC, the timing of diagnosis of associated anomalies of the coronary sinus, and the global impact on morbidity and mortality of persistent LSVC in children with congenital heart disease after cardiac surgery. Retrospective analysis of a cohort of children after cardiac surgery on bypass for congenital heart disease. Three hundred seventy-one patients were included in the study, and their median age was 2.75 years (IQR 0.65-6.63). Forty-seven children had persistent LSVC (12.7 %), and persistent LSVC was identified on echocardiography before surgery in 39 patients (83 %). In three patients (6.4 %) with persistent LSVC, significant inflow obstruction of the left ventricle developed after surgery leading to low output syndrome or secondary pulmonary hypertension. In eight patients (17 %), persistent LSVC was associated with a partially or completely unroofed coronary sinus and in two cases (4 %) with coronary sinus ostial atresia. Duration of mechanical ventilation was significantly shorter in the control group (1.2 vs. 3.0 days, p = 0.04), whereas length of stay in intensive care did not differ. Mortality was also significantly lower in the control group (2.5 vs. 10.6 %, p = 0.004). The results of study show that persistent LSVC in association with congenital cardiac malformation increases the risk of mortality in children with cardiac surgery on cardiopulmonary bypass. Recognition of a persistent LSVC and its associated anomalies is mandatory to avoid complications during or after cardiac surgery.
Resumo:
A 20-month old girl with severe pulmonary hypertension and cardiomegaly was admitted to the paediatric intensive care unit with right ventricular failure of unknown origin. Only after decompression of the heart chambers under extracorporeal membrane oxygenation (ECMO), did the pathognomonic membrane of Cor triatriatum become visible on echocardiography. The patient underwent successful surgical correction and subsequently cardiac function recovered completely. Cor triatriatum remains a rare congenital cardiac disorder with a variable presentation, often including recurrent respiratory infections before right-sided heart failure occurs. This case illustrates that ECMO can serve not only as a bridge to diagnosis, but can also facilitate correct diagnosis. Given the excellent outcome after surgical treatment, it is crucial that cardiologists rule out the possibility of cor triatriatum when assessing a child with unexplained pulmonary hypertension.
Resumo:
The hepato-pulmonary syndrome (HPS) is characterized by a combination of liver disease and pulmonary gas exchange abnormalities with arterial hypoxemia, intrapulmonary vasodilatation and arteriovenous shunting in the absence of intrinsic cardiopulmonary disease. The course of the disease is typically progressive. The mortality rate correlates with the pulmonary shunt volume and the degree of hypoxemia at room air. While the patho-physiology of HPS is still not fully understood, a multifactorial etiology is favored. Apart from functional intrapulmonary arteriovenous shunts which appear to represent a major factor in the development of HPS, both ventilation-perfusion mismatch and limited oxygen diffusion contribute to the HPS. Regarding its clinical appearance, pulmonary and hepatic symptoms have to be distinguished. Contrast echocardiography is the primary diagnostic tool. Symptomatically, hypoxemia can be treated with oxygen. So far, the only successful treatment approach which has been tested in larger patient groups, is liver transplantation. Given this background, the aim of this review is to critically discuss current concepts of this serious complication of liver diseases.
Resumo:
Iatrogenic atrial septal defects are described in 2 patients. They occurred after implantation of Amplatzer occluders to close a patent foramen ovale. While device erosions to the extra-atrial space have been described, erosion induced atrial septal defects are a new medical entity. They may be fairly common in the situation of an atrial septal aneurysm whipping the rim of the device incessantly. They are clinically silent and benign and require echocardiography for detection. A second device solved the problem in the cases described.
Resumo:
AIMS: The adaptation of the myocardial microcirculation in humans to pathologic and physiologic stress has not been examined in vivo so far. We sought to test whether the relative blood volume (rBV) measured by myocardial contrast echocardiography (MCE) can differentiate between left ventricular (LV) hypertrophy (LVH) in hypertensive heart disease and athlete's heart. METHODS AND RESULTS: Four groups were investigated: hypertensive patients with LVH (n = 15), semi-professional triathletes with LVH (n = 15), professional football players (n = 15), and sedentary control individuals without cardiovascular disease (n = 15). MCE was performed at rest and during adenosine-induced hyperaemia. The rBV (mL mL(-1)), its exchange frequency (beta, min(-1)), and myocardial blood flow (mL min(-1) g(-1)) were derived from steady state and refill sequences of ultrasound contrast agent. Hypertensive patients had lower rBV (0.093 +/- 0.013 mL mL(-1)) than triathletes (0.141 +/- 0.012 mL mL(-1), P < 0.001), football players (0.129 +/- 0.014 mL mL(-1), P < 0.001), and sedentary individuals (0.126 +/- 0.018 mL mL(-1), P < 0.001). Conversely, the exchange frequency (beta) was significantly higher in hypertensive patients (11.3 +/- 3.8 min(-1)) than in triathletes (7.4 +/- 1.8 min(-1)), football players (7.7 +/- 2.3 min(-1)), and sedentary individuals (9.0+/-2.5 min(-1)). An rBV below 0.114 mL mL(-1) distinguished hypertensive patients and triathletes with a sensitivity of 93% and a specificity of 100%. CONCLUSION: Pathologic and physiologic LVH were differentiated non-invasively and accurately by rBV, a measure of vascularisation assessed by MCE.
Resumo:
The suspected cause of clinical manifestations of patent foramen ovale (PFO) is a transient or a permanent right-to-left shunt (RLS). Contrast-enhanced transcranial Doppler ultrasound (c-TCD) is a reliable alternative to transesophageal echocardiography (TEE) for diagnosis of PFO, and enables also the detection of extracardiac RLS. The air-containing echo contrast agents are injected intravenously and do not pass the pulmonary circulation. In the presence of RLS, the contrast agents bypass the pulmonary circulation and cause microembolic signals (MES) in the basal cerebral arteries, which are detected by TCD. The two main echo contrast agents in use are agitated saline and D-galactose microparticle solutions. At least one middle cerebral artery (MCA) is insonated, and the ultrasound probe is fixed with a headframe. The monitored Doppler spectra are stored for offline analysis (e.g., videotape) of the time of occurrence and number of MES, which are used to assess the size and functional relevance of the RLS. The examination is more sensitive, if both MCAs are investigated. In the case of negative testing, the examination is repeated using the Valsalva maneuver. Compared to TEE, c-TCD is more comfortable for the patient, enables an easier assessment of the size and functional relevance of the RLS, and allows also the detection of extracardiac RLS. However, c-TCD cannot localize the site of the RLS. Therefore, TEE and TCD are complementary methods and should be applied jointly in order to increase the diagnostic accuracy for detecting PFO and other types of RLS.
Resumo:
BACKGROUND: Congestive heart failure (CHF) is a major public health problem. The use of B-type natriuretic peptide (BNP) tests shows promising diagnostic accuracy. Herein, we summarize the evidence on the accuracy of BNP tests in the diagnosis of CHF and compare the performance of rapid enzyme-linked immunosorbent assay (ELISA) and standard radioimmunosorbent assay (RIA) tests. METHODS: We searched electronic databases and the reference lists of included studies, and we contacted experts. Data were extracted on the study population, the type of test used, and methods. Receiver operating characteristic (ROC) plots and summary ROC curves were produced and negative likelihood ratios pooled. Random-effect meta-analysis and metaregression were used to combine data and explore sources of between-study heterogeneity. RESULTS: Nineteen studies describing 22 patient populations (9 ELISA and 13 RIA) and 9093 patients were included. The diagnosis of CHF was verified by echocardiography, radionuclide scan, or echocardiography combined with clinical criteria. The pooled negative likelihood ratio overall from random-effect meta-analysis was 0.18 (95% confidence interval [CI], 0.13-0.23). It was lower for the ELISA test (0.12; 95% CI, 0.09-0.16) than for the RIA test (0.23; 95% CI, 0.16-0.32). For a pretest probability of 20%, which is typical for patients with suspected CHF in primary care, a negative result of the ELISA test would produce a posttest probability of 2.9%; a negative RIA test, a posttest probability of 5.4%. CONCLUSIONS: The use of BNP tests to rule out CHF in primary care settings could reduce demand for echocardiography. The advantages of rapid ELISA tests need to be balanced against their higher cost.
Resumo:
HISTORY: A 76-year-old woman and a 62-year-old man were both referred to our clinic because of an unexplained weight loss, increasing dry cough and shortness of breath. INVESTIGATIONS: Investigations revealed an adenocarcinoma of the colon with retroperitoneal, mediastinal and supraclavicular lymph node metastasis and poorly differentiated carcinoma of the prostate with extensive bone metastases. During their hospital stay both patients developed increasing shortness of breath and clinical signs of right heart failure. Echocardiography confirmed severe pulmonary hypertension and dilatation of the right ventricle in both patients. Despite the high degree of clinical suspicion CT scans of the thorax could not demonstrate pulmonary embolism. DIAGNOSIS, TREATMENT AND COURSE: During the following days the patients condition deteriorated further and both patients' died from irreversible right heart failure. Both autopsies showed extensive metastatic adenocarcinoma with marked angiosis carcinomatosa of the lungs with numerous occlusions of small arteries and arterioles and resulting cor pulmonale. Thrombotic pulmonary embolism could not be detected. CONCLUSION: In patients with malignant neoplasms, especially adenocarcinomas, dyspnea and signs of increasing pulmonary artery pressure, the possibility of a microscopic pulmonary tumor embolism should be considered after exclusion of more usual causes especially thrombotic pulmonary embolism. In selected cases a cytologic examination of blood aspirated from a wedged pulmonary artery catheter can be performed to prove angiosis is carcinomatosa.
Resumo:
OBJECTIVE(S): Even though the mechanism is not clearly understood, direct intramyocardial cell transplantation has demonstrated potential to treat patients with severe heart failure. We previously reported on the bioengineering of myoblast-based constructs. We investigate here the functional outcome of infarcted hearts treated by implantation of myoblast-seeded scaffolds. METHODS: Adult Lewis rats with echocardiography-confirmed postinfarction reduced ejection fraction (48.3% +/- 1.1%) were randomized to (1) implantation of myoblast-seeded polyurethane patches at the site of infarction (PU-MyoB, n = 11), (2) implantation of nonseeded polyurethane patches (PU, n = 11), (3) sham operation (Sham, n = 12), and (4) direct intramyocardial myoblast injection (MyoB, n = 11). Four weeks later, the functional assessment by echocardiography was repeated, and we additionally performed left ventricular catheterization plus histologic studies. RESULTS: The ejection fraction significantly decreased in the PU (39.1% +/- 2.3%; P = .02) and Sham (39.9% +/- 3.5%; P = .04) groups, whereas it remained stable in the PU-MyoB (48.4% +/- 3.1%) and MyoB (47.9% +/- 3.0%) groups during the observation time. Similarly, left ventricular contractility was significantly higher in groups PU-MyoB (4960 +/- 266 mm Hg/s) and MyoB (4748 +/- 304 mm Hg/s) than in groups PU (3909 +/- 248 mm Hg/s, P = .01) and Sham (4028 +/- 199 mm Hg/s, P = .01). Immunohistology identified a high density of myoblasts within the seeded scaffolds without any migration toward the host cardiac tissue and no evidence of cardiac cell differentiation. CONCLUSIONS: Myoblast-seeded polyurethane scaffolds prevent post-myocardial infarction progression toward heart failure as efficiently as direct intramyocardial injection. The immunohistologic analysis suggests that an indirect mechanism, potentially a paracrine effect, may be assumed.
Resumo:
The rodent model of myocardial infarction (MI) is extensively used in heart failure studies. However, long-term follow-up of echocardiographic left ventricular (LV) function parameters such as the myocardial performance index (MPI) and its ratio with the fractional shortening (LVFS/MPI) has not been validated in conjunction with invasive indexes, such as those derived from the conductance catheter (CC). Sprague-Dawley rats with left anterior descending coronary artery ligation (MI group, n = 9) were compared with a sham-operated control group (n = 10) without MI. Transthoracic echocardiography (TTE) was performed every 2 wk over an 8-wk period, after which classic TTE parameters, especially MPI and LVFS/MPI, were compared with invasive indexes obtained by using a CC. Serial TTE data showed significant alterations in the majority of the noninvasive functional and structural parameters (classic and novel) studied in the presence of MI. Both MPI and LVFS/MPI significantly (P < 0.05 for all reported values) correlated with body weight (r = -0.58 and 0.76 for MPI and LVFS/MPI, respectively), preload recruitable stroke work (r = -0.61 and 0.63), LV end-diastolic pressure (LVEDP) (r = 0.82 and -0.80), end-diastolic volume (r = 0.61 and -0.58), and end-systolic volume (r = 0.46 and -0.48). Forward stepwise linear regression analysis revealed that, of all variables tested, LVEDP was the only independent determinant of MPI (r = 0.84) and LVFS/MPI (r = 0.83). We conclude that MPI and LVFS/MPI correlate strongly and better than the classic noninvasive TTE parameters with established, invasively assessed indexes of contractility, preload, and volumetry. These findings support the use of these two new noninvasive indexes for long-term analysis of the post-MI LV remodeling.
Resumo:
CONTEXT: Individuals susceptible to high-altitude pulmonary edema (HAPE) are characterized by exaggerated pulmonary hypertension and arterial hypoxemia at high altitude, but the underlying mechanism is incompletely understood. Anecdotal evidence suggests that shunting across a patent foramen ovale (PFO) may exacerbate hypoxemia in HAPE. OBJECTIVE: We hypothesized that PFO is more frequent in HAPE-susceptible individuals and may contribute to more severe arterial hypoxemia at high altitude. DESIGN, SETTING, AND PARTICIPANTS: Case-control study of 16 HAPE-susceptible participants and 19 mountaineers resistant to this condition (repeated climbing to peaks above 4000 m and no symptoms of HAPE). MAIN OUTCOME MEASURES: Presence of PFO determined by transesophageal echocardiography, estimated pulmonary artery pressure by Doppler echocardiography, and arterial oxygen saturation measured by pulse oximetry in HAPE-susceptible and HAPE-resistant participants at low (550 m) and high altitude (4559 m). RESULTS: The frequency of PFO was more than 4 times higher in HAPE-susceptible than in HAPE-resistant participants, both at low altitude (56% vs 11%, P = .004; odds ratio [OR], 10.9 [95% confidence interval {CI}, 1.9-64.0]) and high altitude (69% vs 16%, P = .001; OR, 11.7 [95% CI, 2.3-59.5]). At high altitude, mean (SD) arterial oxygen saturation prior to the onset of pulmonary edema was significantly lower in HAPE-susceptible participants than in the control group (73% [10%] vs 83% [7%], P = .001). Moreover, in the HAPE-susceptible group, participants with a large PFO had more severe arterial hypoxemia (65% [6%] vs 77% [8%], P = .02) than those with smaller or no PFO. CONCLUSIONS: Patent foramen ovale was roughly 4 times more frequent in HAPE-susceptible mountaineers than in participants resistant to this condition. At high altitude, HAPE-susceptible participants with a large PFO had more severe hypoxemia. We speculate that at high altitude, a large PFO may contribute to exaggerated arterial hypoxemia and facilitate HAPE.