74 resultados para EXTRACELLULAR BIOSYNTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular DNA traps are part of the innate immune response and are seen with many infectious, allergic, and autoimmune diseases. They can be generated by several different leukocytes, including neutrophils, eosinophils, and monocytes, as well as mast cells. Here, we review the composition of these extracellular DNA-containing structures as well as potential mechanisms for their production and function. In general, extracellular DNA traps have been described as binding to and killing pathogens, particularly bacteria, fungi, but also parasites. On the other hand, it is possible that DNA traps contribute to immunopathology in chronic inflammatory diseases, such as bronchial asthma. In addition, it has been demonstrated that they can initiate and/or potentiate autoimmune diseases. Extracellular DNA traps represent a frequently observed phenomenon in inflammatory diseases, and they appear to participate in the cross-talk between different immune cells. These new insights into the pathogenesis of inflammatory diseases may open new avenues for targeted therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mature dolichol-linked oligosaccharides (mDLOs) needed for eukaryotic protein N-glycosylation are synthesized by a multistep pathway in which the biosynthetic lipid intermediate Man5GlcNAc2-PP-dolichol (M5-DLO) flips from the cytoplasmic to the luminal face of the endoplasmic reticulum. The endoplasmic reticulum membrane protein Rft1 is intimately involved in mDLO biosynthesis. Yeast genetic analyses implicated Rft1 as the M5-DLO flippase, but because biochemical tests challenged this assignment, the function of Rft1 remains obscure. To understand the role of Rft1, we sought to analyze mDLO biosynthesis in vivo in the complete absence of the protein. Rft1 is essential for yeast viability, and no Rft1-null organisms are currently available. Here, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote whose Rft1 homologue functions in yeast. We report that TbRft1-null procyclic trypanosomes grow nearly normally. They have normal steady-state levels of mDLO and significant N-glycosylation, indicating robust M5-DLO flippase activity. Remarkably, the mutant cells have 30-100-fold greater steady-state levels of M5-DLO than wild-type cells. All N-glycans in the TbRft1-null cells originate from mDLO indicating that the M5-DLO excess is not available for glycosylation. These results suggest that rather than facilitating M5-DLO flipping, Rft1 facilitates conversion of M5-DLO to mDLO by another mechanism, possibly by acting as an M5-DLO chaperone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thiazolide nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) is composed of a nitrothiazole- ring and a salicylic acid moiety, which are linked together through an amide bond. NTZ exhibits a broad spectrum of activities against a wide range of helminths, protozoa, enteric bacteria, and viruses infecting animals and humans. Since the first synthesis of the drug, a number of derivatives of NTZ have been produced, which are collectively named thiazolides. These are modified versions of NTZ, which include the replacement of the nitro group with bromo-, chloro-, or other functional groups, and the differential positioning of methyl- and methoxy-groups on the salicylate ring. The presence of a nitro group seems to be the prerequisite for activities against anaerobic or microaerophilic parasites and bacteria. Intracellular parasites and viruses, however, are susceptible to non-nitro-thiazolides with equal or higher effectiveness. Moreover, nitro- and bromo-thiazolides are effective against proliferating mammalian cells. Biochemical and genetic approaches have allowed the identification of respective targets and the molecular basis of resistance formation. Collectively, these studies strongly suggest that NTZ and other thiazolides exhibit multiple mechanisms of action. In microaerophilic bacteria and parasites, the reduction of the nitro group into a toxic intermediate turns out to be the key factor. In proliferating mammalian cells, however, bromo- and nitro-thiazolides trigger apoptosis, which may also explain their activities against intracellular pathogens. The mode of action against helminths may be similar to mammalian cells but has still not been elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human steroid biosynthesis depends on a specifically regulated cascade of enzymes including 3β-hydroxysteroid dehydrogenases (HSD3Bs). Type 2 HSD3B catalyzes the conversion of pregnenolone, 17α-hydroxypregnenolone and dehydroepiandrosterone to progesterone, 17α-hydroxyprogesterone and androstenedione in the human adrenal cortex and the gonads but the exact regulation of this enzyme is unknown. Therefore, specific downregulation of HSD3B2 at adrenarche around age 6-8 years and characteristic upregulation of HSD3B2 in the ovaries of women suffering from the polycystic ovary syndrome remain unexplained prompting us to study the regulation of HSD3B2 in adrenal NCI-H295R cells. Our studies confirm that the HSD3B2 promoter is regulated by transcription factors GATA, Nur77 and SF1/LRH1 in concert and that the NBRE/Nur77 site is crucial for hormonal stimulation with cAMP. In fact, these three transcription factors together were able to transactivate the HSD3B2 promoter in placental JEG3 cells which normally do not express HSD3B2. By contrast, epigenetic mechanisms such as methylation and acetylation seem not involved in controlling HSD3B2 expression. Cyclic AMP was found to exert differential effects on HSD3B2 when comparing short (acute) versus long-term (chronic) stimulation. Short cAMP stimulation inhibited HSD3B2 activity directly possibly due to regulation at co-factor or substrate level or posttranslational modification of the protein. Long cAMP stimulation attenuated HSD3B2 inhibition and increased HSD3B2 expression through transcriptional regulation. Although PKA and MAPK pathways are obvious candidates for possibly transmitting the cAMP signal to HSD3B2, our studies using PKA and MEK1/2 inhibitors revealed no such downstream signaling of cAMP. However, both signaling pathways were clearly regulating HSD3B2 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleotides, such as adenosine triphosphate (ATP), are released by cellular injury, bind to purinergic receptors expressed on hepatic parenchymal and nonparenchymal cells, and modulate cellular crosstalk. Liver resection and resulting cellular stress initiate such purinergic signaling responses between hepatocytes and innate immune cells, which regulate and ultimately drive liver regeneration. We studied a murine model of partial hepatectomy using immunodeficient mice to determine the effects of natural killer (NK) cell-mediated purinergic signaling on liver regeneration. We noted first that liver NK cells undergo phenotypic changes post-partial hepatectomy (PH) in vivo, including increased cytotoxicity and more immature phenotype manifested by alterations in the expression of CD107a, CD27, CD11b, and CD16. Hepatocellular proliferation is significantly decreased in Rag2/common gamma-null mice (lacking T, B, and NK cells) when compared to wildtype and Rag1-null mice (lacking T and B cells but retaining NK cells). Extracellular ATP levels are elevated post-PH and NK cell cytotoxicity is substantively increased in vivo in response to hydrolysis of extracellular ATP levels by apyrase (soluble NTPDase). Moreover, liver regeneration is significantly increased by the scavenging of extracellular ATP in wildtype mice and in Rag2/common gamma-null mice after adoptive transfer of NK cells. Blockade of NKG2D-dependent interactions significantly decreased hepatocellular proliferation. In vitro, NK cell cytotoxicity is inhibited by extracellular ATP in a manner dependent on P2Y1, P2Y2, and P2X3 receptor activation. Conclusion: We propose that hepatic NK cells are activated and cytotoxic post-PH and support hepatocellular proliferation. NK cell cytotoxicity is, however, attenuated by hepatic release of extracellular ATP by way of the activation of specific P2 receptors. Clearance of extracellular ATP elevates NK cell cytotoxicity and boosts liver regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At birth, the mammalian lung is still immature. The alveoli are not yet formed and the interairspace walls contain two capillary layers which are separated by an interstitial core. After alveolarization (first 2 postnatal weeks in rats) the alveolar septa mature: their capillary layers merge, the amount of connective tissue decreases, and the mature lung parenchyma is formed (second and third week). During the first 3 wk of life the role of tissue transglutaminase (tTG) was studied in rat lung by immunostaining of cryostat and paraffin sections, by Northern and Western blotting, and by a quantitative determination of gamma-glutamyl-epsilon-lysine. While enzyme activity and intracellular tTG were already present before term, the enzyme product (gamma-glutamyl-epsilon-lysine-crosslink) and extracellular tTG appeared between postnatal days 10 and 19 in the lung parenchyma. In large blood vessels and large airways, which mature earlier than the parenchyma, both the enzyme product and extracellular tTG had already appeared at the end of the first postnatal week. We conclude that tTG is expressed and externalized into the extracellular matrix of lung shortly before maturation of an organ area. Because tTG covalently and irreversibly crosslinks extracellular matrix proteins, we hypothesize that it may prevent or delay further remodeling of basement membranes and may stabilize other extracellular components, such as microfibrils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid pollen tube growth requires a high rate of sugar metabolism to meet energetic and biosynthetic demands. Previous work on pollen sugar metabolism showed that tobacco pollen carry out efficient ethanolic fermentation concomitantly with a high rate of respiration (Bucher et al ., 1995). Here we show that the products of fermentation, acetaldehyde and ethanol, are further metabolised in a pathway that bypasses mitochondrial PDH. The enzymes involved in this pathway are pyruvate decarboxylase, aldehyde dehydrogenase and acetyl-CoA synthetase. Radiolabelling experiments show that during tobacco pollen tube growth label of C-14-ethanol is incorporated into CO2 as well as into lipids and other higher molecular weight compounds. A role for the glyoxylate cycle appears unlikely since activity of malate synthase, a key enzyme of the glyoxylate cycle, could not be detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basophils are primarily associated with a proinflammatory and immunoregulatory role in allergic diseases and parasitic infections. Recent studies have shown that basophils can also bind various bacteria both in the presence and the absence of opsonizing Abs. In this report, we show that both human and mouse basophils are able to produce mitochondrial reactive oxygen species and to form extracellular DNA traps upon IL-3 priming and subsequent activation of the complement factor 5 a receptor or FcεRI. Such basophil extracellular traps (BETs) contain mitochondrial, but not nuclear DNA, as well as the granule proteins basogranulin and mouse mast cell protease 8. BET formation occurs despite the absence of any functional NADPH oxidase in basophils. BETs can be found in both human and mouse inflamed tissues, suggesting that they also play a role under in vivo inflammatory conditions. Taken together, these findings suggest that basophils exert direct innate immune effector functions in the extracellular space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene is a stress hormone with contrasting effects on herbivore resistance. However, it remains unknown whether these differences are plant- or herbivore-specific. We cloned a rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene, OsACS2, whose transcripts were rapidly up-regulated in response to mechanical wounding and infestation by two important pests: the striped stem borer (SSB) Chilo suppressalis and the brown planthopper (BPH) Nilaparvata lugens. Antisense expression of OsACS2 (as-acs) reduced elicited ethylene emission, SSB-elicited trypsin protease inhibitor (TrypPI) activity, SSB-induced volatile release, and SSB resistance. Exogenous application of ACC restored TrypPI activity and SSB resistance. In contrast to SSB, BPH infestation increased volatile emission in as-acs lines. Accordingly, BPH preferred to feed and oviposit on wild-type (WT) plants—an effect that could be attributed to two repellent volatiles, 2-heptanone and 2-heptanol, that were emitted in higher amounts by as-acs plants. BPH honeydew excretion was reduced and natural enemy attraction was enhanced in as-acs lines, resulting in higher overall resistance to BPH. These results demonstrate that ethylene signaling has contrasting, herbivore-specific effects on rice defense responses and resistance against a chewing and a piercing-sucking insect, and may mediate resistance trade-offs between herbivores of different feeding guilds in rice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Acute thrombotic microangiopathies (TMAs) are characterized by excessive microvascular thrombosis and are associated with markers of neutrophil extracellular traps (NETs) in plasma. NETs are composed of DNA fibers and promote thrombus formation through the activation of platelets and clotting factors. OBJECTIVE The efficient removal of NETs may be required to prevent excessive thrombosis such as in TMAs. To test this hypothesis, we investigated whether TMAs are associated with a defect in the degradation of NETs. APPROACH AND RESULTS We show that NETs generated in vitro were efficiently degraded by plasma from healthy donors. However, NETs remained stable after exposure to plasma from TMA patients. The inability to degrade NETs was linked to a reduced DNase activity in TMA plasma. Plasma DNase1 was required for efficient NET-degradation and TMA plasma showed decreased levels of this enzyme. Supplementation of TMA plasma with recombinant human DNase1 restored NET-degradation activity. CONCLUSIONS Our data indicates that DNase1-mediated degradation of NETs is impaired in patients with TMAs. The role of plasma DNases in thrombosis is, as of yet, poorly understood. Reduced plasma DNase1 activity may cause the persistence of pro-thrombotic NETs and thus promote microvascular thrombosis in TMA patients. This article is protected by copyright. All rights reserved.