154 resultados para ENDOTHELIAL-CELL APOPTOSIS
Resumo:
The goal of this study was to evaluate in vitro and in vivo the effects of up-regulation of the proangiogenic hypoxia inducible factor (HIF)-1α induced by dimethyloxalylglycine on endothelial cell cultures and on skin flap survival.
Resumo:
Thrombotic microangiopathy (TMA) has multiple etiologies. In the four disorders described in this review, the primary organ involved is the kidney. Drug-associated TMA can be an acute, immune-mediated disorder or the result of gradual, dose-dependent toxicity. TMA may occur in patients with advanced HIV infection, possibly mediated by angio-invasive infections. TMA following allogeneic hematopoietic stem cell transplantation may also be caused by drug toxicity; the pathogenesis may involve inhibition of vascular endothelial cell growth factor in renal podocytes. Malignancies of many types with systemic microvascular involvement may cause TMA. Recognition that these syndromes may mimic TTP is important to provide appropriate management and to avoid the inappropriate use of plasma exchange treatment.
Resumo:
The pre-treatment of tumour neovessels by low-level photodynamic therapy (PDT) improves the distribution of concomitantly administered systemic chemotherapy. The mechanism by which PDT permeabilizes the tumour vessel wall is only partially known. We have recently shown that leukocyte-endothelial cell interaction is essential for photodynamic drug delivery to normal tissue. The present study investigates whether PDT enhances drug delivery in malignant mesothelioma and whether it involves comparable mechanisms of actions.
Resumo:
This study investigates the influence of 17β-estradiol (E2) on nitric oxide (NO) production in endothelial cell cultures and the effect of topical E2 on the survival of skin flap transplants in a rat model. Human umbilical vein endothelial cells were treated with three different E2 concentrations and nitrite (NO2) concentrations, as well as endothelial nitric oxide synthase (eNOS) protein expressions were analyzed. In vivo, random-pattern skin flaps were raised in female Wistar rats 14 days following ovariectomy and treated with placebo ointment (group 1), E2 as gel (group 2), and E2 via plaster (group 3). Flap perfusion, survival, and NO2 levels were measured on postoperative day 7. In vitro, E2 treatment increased NO2 concentration in cell supernatant and eNOS expression in cell lysates (p < 0.05). In vivo, E2 treated (gel and plaster groups) demonstrated significantly increased skin flap survival compared to the placebo group (p < 0.05). E2 plaster-treated animals exhibited higher NO2 blood levels than placebo (p < 0.05) paralleling the in vitro observations. E2 increases NO production in endothelial cells via eNOS activation. Topical E2 application can significantly increase survival of ischemically challenged skin flaps in a rat model and may augment wound healing in other ischemic situations via activation of NO production.
Vascular endothelial growth factor-A and aldosterone: relevance to normal pregnancy and preeclampsia
Resumo:
Aldosterone levels are markedly elevated during normal pregnancy but fall even though volume contracts when preeclampsia occurs. The level of aldosterone in either condition cannot be explained solely by the activity of the renin-angiotensin II system. In normal gestation, vascular endothelial growth factor (VEGF) is thought to maintain vascular health, but its role in adrenal hormone production is unknown. We hypothesized that the role of VEGF in the adrenal gland is to maintain vascular health and regulate aldosterone production. Here, we demonstrate that supernatant of endothelial cells grown in the presence of VEGF enhanced aldosterone synthase activity in human adrenocortical cells. VEGF either alone or combined with angiotensin II increased aldosterone production in adrenal cells. These data suggest that endothelial cell-dependent and independent activation of aldosterone is regulated by VEGF. In contrast to angiotensin II, VEGF did not upregulate the steroidogenic acute regulatory protein. Consistent with this observation, angiotensin II stimulated both aldosterone and cortisol synthesis from progesterone, whereas VEGF stimulated selectively aldosterone production. In rats, overexpression of soluble fms-like tyrosine kinase-1, an endogenous VEGF inhibitor, led to adrenocortical capillary rarefaction and fall in aldosterone concentrations that correlated inversely with soluble fms-like tyrosine kinase-1 levels. These findings may explain why aldosterone increases so markedly during normal gestation and why preeclampsia, a condition characterized by high soluble fms-like tyrosine kinase-1, is associated with inappropriately low aldosterone levels in spite of relatively lower plasma volumes.
Resumo:
The apicomplexan parasites Theileria annulata and Theileria parva cause severe lymphoproliferative disorders in cattle. Disease pathogenesis is linked to the ability of the parasite to transform the infected host cell (leukocyte) and induce uncontrolled proliferation. It is known that transformation involves parasite dependent perturbation of leukocyte signal transduction pathways that regulate apoptosis, division and gene expression, and there is evidence for the translocation of Theileria DNA binding proteins to the host cell nucleus. However, the parasite factors responsible for the inhibition of host cell apoptosis, or induction of host cell proliferation are unknown. The recent derivation of the complete genome sequence for both T. annulata and T. parva has provided a wealth of information that can be searched to identify molecules with the potential to subvert host cell regulatory pathways. This review summarizes current knowledge of the mechanisms used by Theileria parasites to transform the host cell, and highlights recent work that has mined the Theileria genomes to identify candidate manipulators of host cell phenotype.
Resumo:
ABSTRACT: BACKGROUND: Hepatic sinusoidal resistance is regulated by vasoactive factors including endothelin-1 (ET-1) and nitric oxide (NO). In the absence of NO, vasoconstrictor response to endothelin is expected to predominate. Therefore, we hypothesized sensitivity to endothelin to be increased in mice lacking the endothelial cell NO synthase gene. Response of vascular resistance to endothelin was assessed in the in situ perfused liver of endothelial constitutive nitric oxide synthase (ecNOS) knockout and wild type mice. Livers were also harvested for RNA and protein isolation for quantitative PCR and Western blotting, respectively. The expression of endothelin receptors, isoenzymes of NO synthase, heme-oxygenase and adrenomedullin was quantified. RESULTS: Endothelin increased hepatic vascular resistance in a dose-dependent manner in both strains; however, this increase was significantly less in ecNOS knockout mice at physiologic concentrations. Expression of heme-oxygenases and adrenomedullin was similar in both groups, whereas inducible nitric oxide synthase (iNOS) protein was not detectable in either strain. mRNA levels of pre-pro-endothelin-1 and ETB receptor were comparable in both strains, while mRNA for ETA receptor was decreased in ecNOS knockouts. CONCLUSION: Livers of ecNOS knockout mice have a decreased sensitivity to endothelin at physiologic concentrations; this is associated with a decreased expression of ETA receptors, but not with other factors, such as iNOS, ETB receptors, adrenomedullin or heme-oxygenase. Further studies targeting adaptive changes in ETA receptor distribution and/or intracellular signaling downstream of the receptor are indicated.
Resumo:
Macrophage activating syndrome (MAS) is a rare hematological disorder associated with uncontrolled systemic T-cell activation. Persistent fever, fatigue and hepatosplenomegaly are frequent clinical manifestations, whereas hyperferritinemia, elevated serum lactate dehydrogenase levels and cytopenia are key criteria for the diagnosis of MAS. The nature of liver pathology in MAS has been partially elucidated but destructive biliary lesions have been rarely described. This report illustrates four cases of MAS developing marked cholestasis, leading to one case of biliary cirrhosis necessitating liver transplantation. Histologically, liver involvement was characterized in all cases by acute lobular hepatitis, marked hepatocyte apoptosis and small bile duct injury similar to the vanishing bile duct syndrome. Immuno-histological studies showed that the inflammatory changes and bile duct lesions were dominated by the presence of activated macrophages and T-cells, in particular CD8+ lymphocytes, and in part NK-cells. These findings suggest that in MAS, various T-cell triggers such as infection, autoimmune disease and malignancy might result in the release of cytokines, which in turn activate macrophages to trigger a systemic acute phase response and local tissue damage. This communication suggests that a macrophage, T- and NK-cell network is operational in the pathogenesis of the cholangiocyte, hepatocyte and sinus endothelial cell damage in MAS.
Resumo:
Nanoscale drug delivery systems, such as sterically stabilized immunoliposomes binding to internalizing tumor-associated antigens, can increase therapeutic efficacy and reduce toxicity to normal tissues compared with nontargeted liposomes. The epithelial cell adhesion molecule (EpCAM) is of interest as a ligand for targeted drug delivery because it is abundantly expressed in solid tumors but shows limited distribution in normal tissues. To generate EpCAM-specific immunoliposomes for targeted cancer therapy, the humanized single-chain Fv antibody fragment 4D5MOCB was covalently linked to the exterior of coated cationic liposomes. As anticancer agent, we encapsulated the previously described antisense oligonucleotide 4625 specific for both bcl-2 and bcl-xL. The EpCAM-targeted immunoliposomes (SIL25) showed specific binding to EpCAM-overexpressing tumor cells, with a 10- to 20-fold increase in binding compared with nontargeted control liposomes. No enhanced binding was observed on EpCAM-negative control cells. On cell binding, SIL25 was efficiently internalized by receptor-mediated endocytosis, ultimately leading to down-regulation of both bcl-2 and bcl-xL expression on both the mRNA and protein level, which resulted in enhanced tumor cell apoptosis. In combination experiments, the use of SIL25 led to a 2- to 5-fold sensitization of EpCAM-positive tumor cells of diverse origin to death induction by doxorubicin. Our data show the promise of EpCAM-specific drug delivery systems, such as antisense-loaded immunoliposomes, for targeted cancer therapy.
Resumo:
Cytosolic CuZn-SOD (SOD1) is a dimeric, carbohydrate-free enzyme with a molecular weight of about 32 kDa and also circulates in human blood plasma. Due to its molecular mass it has been believed that the enzyme cannot penetrate the cell membrane. Here we report that rapid endocytosis of FITC-CuZn-SOD into human endothelial cells occurs within 5 min. Moreover, relaxation of rat aortic rings in response to CuZn-SOD is associated with a lag time of 45-60 s and only observed in the presence of intact endothelial cells. The results indicate acute and rapid endothelial cell endocytosis of CuZn-SOD, possibly via activation of a receptor-mediated pathway. Intracellular uptake via endocytosis may contribute to the vascular effects of CuZn-SOD, including vasodilation, and is likely to play a role in regulation of vascular tone and diseases such as atherosclerosis.
Resumo:
Mouse cell lines were immortalized by introduction of specific immortalizing genes. Embryonic and adult animals and an embryonal stem cell line were used as a source of primary cells. The immortalizing genes were either introduced by DNA transfection or by ecotropic retrovirus transduction. Fibroblasts were obtained by expression of SV40 virus large T antigen (TAg). The properties of the resulting fibroblast cell lines were reproducible, independent of the donor mouse strains employed and the cells showed no transformed properties in vitro and did not form tumors in vivo. Endothelial cell lines were generated by Polyoma virus middle T antigen expression in primary embryonal cells. These cell lines consistently expressed relevant endothelial cell surface markers. Since the expression of the immortalizing genes was expected to strongly influence the cellular characteristics fibroblastoid cells were reversibly immortalized by using a vector that allows conditional expression of the TAg. Under inducing conditions, these cells exhibited properties that were highly similar to the properties of constitutively immortalized cells. In the absence of TAg expression, cell proliferation stops. Cell growth is resumed when TAg expression is restored. Gene expression profiling indicates that TAg influences the expression levels of more than 1000 genes that are involved in diverse cellular processes. The data show that conditionally immortalized cell lines have several advantageous properties over constitutively immortalized cells.
Resumo:
Abrogation of the endothelial cell-specific semaphorin receptor PlexinD1 in zebrafish and mouse reveals semaphorin functions selectively affecting the cardiovascular system. Neuropilins team up with PlexinD1 to form a novel endothelial receptor complex for class 3 semaphorins.
Resumo:
Infection with bacteria such as Chlamydia pneumonia, Helicobacter pylori or Porphyromonas gingivalis may be triggering the secretion of inflammatory cytokines that leads to atherogenesis. The mechanisms by which the innate immune recognition of these pathogens could lead to atherosclerosis remain unclear. In this study, using human vascular endothelial cells or HEK-293 cells engineered to express pattern-recognition receptors (PRRs), we set out to determine Toll-like receptors (TLRs) and functionally associated PRRs involved in the innate recognition of and response to lipopolysaccharide (LPS) from H. pylori or P. gingivalis. Using siRNA interference or recombinant expression of cooperating PRRs, we show that H. pylori and P. gingivalis LPS-induced cell activation is mediated through TLR2. Human vascular endothelial cell activation was found to be lipid raft-dependent and to require the formation of heterotypic receptor complexes comprising of TLR2, TLR1, CD36 and CD11b/CD18. In addition, we report that LPS from these bacterial strains are able to antagonize TLR4. This antagonistic activity of H. pylori or P. gingivalis LPS, as well as their TLR2 activation capability may be associated with their ability to contribute to atherosclerosis.
Resumo:
Mononuclear phagocytes have been attributed a crucial role in the host defense toward influenza virus (IV), but their contribution to influenza-induced lung failure is incompletely understood. We demonstrate for the first time that lung-recruited "exudate" macrophages significantly contribute to alveolar epithelial cell (AEC) apoptosis by the release of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a murine model of influenza-induced pneumonia. Using CC-chemokine receptor 2-deficient (CCR2(-/-)) mice characterized by defective inflammatory macrophage recruitment, and blocking anti-CCR2 antibodies, we show that exudate macrophage accumulation in the lungs of influenza-infected mice is associated with pronounced AEC apoptosis and increased lung leakage and mortality. Among several proapoptotic mediators analyzed, TRAIL messenger RNA was found to be markedly up-regulated in alveolar exudate macrophages as compared with peripheral blood monocytes. Moreover, among the different alveolar-recruited leukocyte subsets, TRAIL protein was predominantly expressed on macrophages. Finally, abrogation of TRAIL signaling in exudate macrophages resulted in significantly reduced AEC apoptosis, attenuated lung leakage, and increased survival upon IV infection. Collectively, these findings demonstrate a key role for exudate macrophages in the induction of alveolar leakage and mortality in IV pneumonia. Epithelial cell apoptosis induced by TRAIL-expressing macrophages is identified as a major underlying mechanism.
Resumo:
Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1alpha and HIF-2alpha, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1alpha or HIF-2alpha by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression.