94 resultados para ENDOCRINE DISRUPTION
Resumo:
We report the phenotype of mice with targeted disruption of the Trpv6 (Trpv6 KO) epithelial calcium channel. The mice exhibit disordered Ca(2+) homeostasis, including defective intestinal Ca(2+) absorption, increased urinary Ca(2+) excretion, decreased BMD, deficient weight gain, and reduced fertility. Although our Trpv6 KO affects the closely adjacent EphB6 gene, the phenotype reported here is not related to EphB6 dysfunction. INTRODUCTIOn: The mechanisms underlying intestinal Ca(2+) absorption are crucial for overall Ca(2+) homeostasis, because diet is the only source of all new Ca(2+) in the body. Trpv6 encodes a Ca(2+)-permeable cation channel responsible for vitamin D-dependent intestinal Ca(2+) absorption. Trpv6 is expressed in the intestine and also in the skin, placenta, kidney, and exocrine organs. MATERIALS AND METHODS: To determine the in vivo function of TRPV6, we generated mice with targeted disruption of the Trpv6 (Trpv6 KO) gene. RESULTS: Trpv6 KO mice are viable but exhibit disordered Ca(2+) homeostasis, including a 60% decrease in intestinal Ca(2+) absorption, deficient weight gain, decreased BMD, and reduced fertility. When kept on a regular (1% Ca(2+)) diet, Trpv6 KO mice have deficient intestinal Ca(2+) absorption, despite elevated levels of serum PTH (3.8-fold) and 1,25-dihydroxyvitamin D (2.4-fold). They also have decreased urinary osmolality and increased Ca(2+) excretion. Their serum Ca(2+) is normal, but when challenged with a low (0.25%) Ca(2+) diet, Trpv6 KO mice fail to further increase serum PTH and vitamin D, ultimately developing hypocalcemia. Trpv6 KO mice have normal urinary deoxypyridinoline excretion, although exhibiting a 9.3% reduction in femoral mineral density at 2 months of age, which is not restored by treatment for 1 month with a high (2%) Ca(2+) "rescue" diet. In addition to their deranged Ca(2+) homeostasis, the skin of Trpv6 KO mice has fewer and thinner layers of stratum corneum, decreased total Ca(2+) content, and loss of the normal Ca(2+) gradient. Twenty percent of all Trpv6 KO animals develop alopecia and dermatitis. CONCLUSIONS: Trpv6 KO mice exhibit an array of abnormalities in multiple tissues/organs. At least some of these are caused by tissue-specific mechanisms. In addition, the kidneys and bones of Trpv6 KO mice do not respond to their elevated levels of PTH and 1,25-dihydroxyvitamin D. These data indicate that the TRPV6 channel plays an important role in Ca(2+) homeostasis and in other tissues not directly involved in this process.
Resumo:
The role of colostrum and milk in the neonate has been chiefly recognized as a comprehensive nutrient foodstuff. In addition, the provision of colostrum-the first milk-for early immune capacity has been well documented for several species. Colostrum is additionally a rich and concentrated source of various factors that demonstrate biological activity in vitro. Three hypotheses have been proposed for the phenotypic function of these secreted bioactive components: (1) only mammary disposal, (2) mammary cell regulation, and (3) neonatal function [gastrointestinal tract (GIT) or systemic]. Traditionally, it was assumed that the development of the GIT is preprogrammed and not influenced by events occurring in the intestinal lumen. However, a large volume of research has demonstrated that colostrum (or milk-borne) bioactive components can basically contribute to the regulation of GIT growth and differentiation, while their role in postnatal development at physiological concentrations has remained elusive. Much of our current understanding is derived from cell culture and laboratory animals, but experimentation with agriculturally important species is taking place. This chapter provides an overview of work conducted primarily in neonatal calves and secondarily in other species on the effects on neonates of selected peptide endocrine factors (hormones, growth factors, in part cytokines) in colostrum. The primary focus will be on insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) and other bioactive peptides, but new interest and concern about steroids (especially estrogens) in milk are considered as well.
Resumo:
Criteria for the staging and grading of neuroendocrine tumors (NETs) of midgut and hindgut origin were established at the second Consensus Conference in Frascati (Rome) organized by the European Neuroendocrine Tumor Society (ENETS). The proposed tumor-node-metastasis (TNM) classifications are based on the recently published ENETS Guidelines for the Diagnosis and Treatment of gastroenteropancreatic NETs and follow our previous proposal for foregut tumors. The new TNM classifications for NETs of the ileum, appendix, colon, and rectum, and the grading system were designed, discussed, and consensually approved by all conference participants. These proposals need to be validated and are meant to help clinicians in the stratification, treatment and follow-up of patients.
Resumo:
We recently reported that the pathogenesis of pemphigus vulgaris (PV), an autoimmune blistering skin disorder, is driven by the accumulation of c-Myc secondary to abrogation of plakoglobin (PG)-mediated transcriptional c-Myc suppression. PG knock-out mouse keratinocytes express high levels of c-Myc and resemble PVIgG-treated wild-type keratinocytes in most respects. However, they fail to accumulate nuclear c-Myc and loose intercellular adhesion in response to PVIgG-treatment like wild-type keratinocytes. This suggested that PG is also required for propagation of the PVIgG-induced events between augmented c-Myc expression and acantholysis. Here, we addressed this possibility by comparing PVIgG-induced changes in the desmosomal organization between wild-type and PG knock-out keratinocytes. We found that either bivalent PVIgG or monovalent PV-Fab (known to trigger blister formation in vivo) disrupt the linear organization of all major desmosomal components along cell borders in wild-type keratinocytes, simultaneously with a reduction in intercellular adhesive strength. In contrast, PV-Fab failed to affect PG knock-out keratinocytes while PVIgG cross-linked their desmosomal cadherins without significantly affecting desmoplakin. These results identify PG as a principle effector of the PVIgG-induced signals downstream of c-Myc that disrupt the desmosomal plaque at the plasma membrane.
Resumo:
Statins exert anti-inflammatory, anti-atherogenic actions. The mechanisms responsible for these effects remain only partially elucidated. Diabetes and obesity are characterized by low-grade inflammation. Metabolic and endocrine adipocyte dysfunction is known to play a crucial role in the development of these disorders and the related cardiovascular complications. Thus, direct modulation of adipocyte function may represent a mechanism of pleiotropic statin actions. We investigated effects of atorvastatin on apoptosis, differentiation, endocrine, and metabolic functions in murine white and brown adipocyte lines. Direct exposure of differentiating preadipocytes to atorvastatin strongly reduced lipid accumulation and diminished protein expression of the differentiation marker CCAAT/enhancer binding protein-beta (CEBP-beta). In fully differentiated adipocytes, however, lipid accumulation remained unchanged after chronic atorvastatin treatment. Furthermore, cell viability was reduced in response to atorvastatin treatment in proliferating and differentiating preadipocytes, but not in differentiated cells. Moreover, atorvastatin induced apoptosis and inhibited protein kinase B (AKT) phosphorylation in proliferating and differentiating preadipocytes, but not in differentiated adipocytes. On the endocrine level, direct atorvastatin treatment of differentiated white adipocytes enhanced expression of the pro-inflammatory adipokine interleukin-6 (IL-6), and downregulated expression of the insulin-mimetic and anti-inflammatory adipokines visfatin and adiponectin. Finally, these direct adipotropic endocrine effects of atorvastatin were paralleled by the acute inhibition of insulin-induced glucose uptake in differentiated white adipocytes, while protein expression of the thermogenic uncoupling protein-1 (UCP-1) in brown adipocytes remained unchanged. Taken together, our data for the first time demonstrate direct differentiation state-dependent effects of atorvastatin including apoptosis, modulation of pro-inflammatory and glucostatic adipokine expression, and insulin resistance in adipose cells. These differential interactions may explain variable clinical observations.
Resumo:
CONTEXT AND OBJECTIVE: Alteration of exon splice enhancers (ESE) may cause autosomal dominant GH deficiency (IGHD II). Disruption analysis of a (GAA) (n) ESE motif within exon 3 by introducing single-base mutations has shown that single nucleotide mutations within ESE1 affect pre-mRNA splicing. DESIGN, SETTING, AND PATIENTS: Confirming the laboratory-derived data, a heterozygous splice enhancer mutation in exon 3 (exon 3 + 2 A-->C) coding for GH-E32A mutation of the GH-1 gene was found in two independent pedigrees, causing familial IGHD II. Because different ESE mutations have a variable impact on splicing of exon 3 of GH and therefore on the expression of the 17.5-kDa GH mutant form, the GH-E32A was studied at the cellular level. INTERVENTIONS AND RESULTS: The splicing of GH-E32A, assessed at the protein level, produced significantly increased amounts of 17.5-kDa GH isoform (55% of total GH protein) when compared with the wt-GH. AtT-20 cells coexpressing both wt-GH and GH-E32A presented a significant reduction in cell proliferation as well as GH production after forskolin stimulation when compared with the cells expressing wt-GH. These results were complemented with confocal microscopy analysis, which revealed a significant reduction of the GH-E32A-derived isoform colocalized with secretory granules, compared with wt-GH. CONCLUSION: GH-E32A mutation found within ESE1 weakens recognition of exon 3 directly, and therefore, an increased production of the exon 3-skipped 17.5-kDa GH isoform in relation to the 22-kDa, wt-GH isoform was found. The GH-E32A mutant altered stimulated GH production as well as cell proliferation, causing IGHD II.
Resumo:
It has been established that successful pancreas transplantation in Type 1 (insulin-dependent) diabetic patients results in normal but exaggerated phasic glucose-induced insulin secretion, normal intravenous glucose disappearance rates, improved glucose recovery from insulin-induced hypoglycaemia, improved glucagon secretion during insulin-induced hypoglycaemia, but no alterations in pancreatic polypeptide responses to hypoglycaemia. However, previous reports have not segregated the data in terms of the length of time following successful transplantation and very little prospective data collected over time in individual patients has been published. This article reports that in general there are no significant differences in the level of improvement when comparing responses as early as three months post-operatively up to as long as two years post-operatively when examining the data cross-sectionally in patients who have successfully maintained their allografts. Moreover, this remarkable constancy in pancreatic islet function is also seen in a smaller group of patients who have been examined prospectively at various intervals post-operatively. It is concluded that successful pancreas transplantation results in remarkable improvements in Alpha and Beta cell but not PP cell function that are maintained for at least one to two years.
Resumo:
To characterize pancreatic endocrine secretion and to examine interrelationships among alterations in alpha, beta, and pancreatic polypeptide cell function in patients with cystic fibrosis (CF), we studied 19 patients with exocrine insufficiency (EXO), including 9 receiving insulin therapy (EXO-IT); 10 patients with no exocrine insufficiency (NEXO); and 10 normal control subjects. First-phase C-peptide response to intravenously administered glucose was significantly impaired in CF patients with exocrine insufficiency (EXO-IT = 0.02 +/- 0.01; EXO = 0.11 +/- 0.02; NEXO = 0.25 +/- 0.05; control subjects = 0.30 +/- 0.04 nmol/L). Lowering fasting glucose levels with exogenous insulin administration in EXO-IT did not improve beta cell responsivity to glucose. The C-peptide response to arginine was less impaired (EXO-IT = 0.12 +/- 0.02; EXO = 0.15 +/- 0.02; NEXO = 0.23 +/- 0.06; control subjects = 0.28 +/- 0.04 nmol/L). Alpha cell function, measured as peak glucagon secretion in response to hypoglycemia, was diminished in EXO but not NEXO (EXO-IT = 21 +/- 10; EXO = 62 +/- 19; NEXO = 123 +/- 29; control subjects = 109 +/- 12 ng/L). Despite diminished glucagon response, EXO patients recovered normally from hypoglycemia. Peak pancreatic polypeptide response to hypoglycemia distinguished CF patients with exocrine insufficiency from those without exocrine insufficiency (EXO-IT = 3 +/- 2; EXO = 3 +/- 1; NEXO = 226 +/- 68; control subjects = 273 +/- 100 pmol/L). Thus CF patients with exocrine disease have less alpha, beta, and pancreatic polypeptide cell function than CF patients without exocrine disease. These data suggest either that exocrine disease causes endocrine dysfunction in CF or that a common pathogenic process simultaneously and independently impairs exocrine and endocrine function.
Resumo:
Pituitary apoplexy, diabetes insipidus, thyroid storm, myxedema coma, parathyrotoxic crisis, hypocalcemia tetany, pheochromocytoma and Addison crisis, diabetic ketoacidosis, diabetic hyperosmolar nonketotic coma, hypoglycemia and carcinoid crisis are the most important endocrine crises. Some of them are common, others very rare. All physicians nevertheless need to have at least a basic knowledge of all of them, since symptoms and signs of endocrine crises overlap with those of other severe disease states, and the failure to recognise endocrine crises as such and to begin rapidly the specific therapy can have fatal consequences.
Resumo:
FGFRL1 is a recently discovered member of the fibroblast growth factor receptor family that is lacking the intracellular tyrosine kinase domain. To elucidate the function of the novel receptor, we created mice with a targeted disruption of the Fgfrl1 gene. These mice develop normally until term, but die within a few minutes after birth due to respiratory failure. The respiratory problems are explained by a significant reduction in the size of the diaphragm muscle, which is not sufficient to inflate the lungs after birth. The remaining portion of the diaphragm muscle appears to be well developed and innervated. It consists of differentiated myofibers with nuclei at the periphery. Fast and slow muscle fibers occur in normal proportions. The myogenic regulatory factors MyoD, Myf5, myogenin and Mrf4 and the myocyte enhancer factors Mef2A, Mef2B, Mef2C and Mef2D are expressed at normal levels. Experiments with a cell culture model involving C2C12 myoblasts show that Fgfrl1 is expressed during the late stages of myotube formation. Other skeletal muscles do not appear to be affected in the Fgfrl1 deficient mice. Thus, Fgfrl1 plays a critical role in the development of the diaphragm.
Resumo:
PURPOSE: To explore potential differences in efficacy, treatment completion, and adverse events (AEs) in elderly women receiving adjuvant tamoxifen or letrozole for five years in the Breast International Group (BIG) 1-98 trial. METHODS: This report includes the 4,922 patients allocated to 5 years of letrozole or tamoxifen in the BIG 1-98 trial. The median follow-up was 40.4 months. Subpopulation Treatment Effect Pattern Plot (STEPP) analysis was used to examine the patterns of differences in disease-free survival and incidences of AEs according to age. In addition, three categoric age groups were defined: "younger postmenopausal" patients were younger than 65 years (n = 3,127), "older" patients were 65 to 74 years old (n = 1,500), and "elderly" patients were 75 years of age or older (n = 295). RESULTS: Efficacy results for subpopulations defined by age were similar to the overall trial results: Letrozole significantly improved disease-free survival (DFS), the primary end point, compared with tamoxifen. Elderly patients were less likely to complete trial treatment, but at rates that were similar in the two treatment groups. The incidence of bone fractures, observed more often in the letrozole group, did not differ by age. In elderly patients, letrozole had a significantly higher incidence of any grade 3 to 5 protocol-specified non-fracture AE compared with tamoxifen (P = .002), but differences were not significant for thromboembolic or cardiac AEs. CONCLUSION: Adjuvant treatment with letrozole had superior efficacy (DFS) compared with tamoxifen in all age groups. On the basis of a small number of patients older than 75 years (6%), age per se should not unduly affect the choice of adjuvant endocrine therapy.
Resumo:
To compare the efficacy of chemoendocrine treatment with that of endocrine treatment (ET) alone for postmenopausal women with highly endocrine responsive breast cancer. In the International Breast Cancer Study Group (IBCSG) Trials VII and 12-93, postmenopausal women with node-positive, estrogen receptor (ER)-positive or ER-negative, operable breast cancer were randomized to receive either chemotherapy or endocrine therapy or combined chemoendocrine treatment. Results were analyzed overall in the cohort of 893 patients with endocrine-responsive disease, and according to prospectively defined categories of ER, age and nodal status. STEPP analyses assessed chemotherapy effect. The median follow-up was 13 years. Adding chemotherapy reduced the relative risk of a disease-free survival event by 19% (P = 0.02) compared with ET alone. STEPP analyses showed little effect of chemotherapy for tumors with high levels of ER expression (P = 0.07), or for the cohort with one positive node (P = 0.03). Chemotherapy significantly improves disease-free survival for postmenopausal women with endocrine-responsive breast cancer, but the magnitude of the effect is substantially attenuated if ER levels are high.
Resumo:
In contrast to malformations, cerebellar disruptions have attracted little interest in the literature. We draw attention for the first time to the hypothesis that cerebellar clefts are residual changes following a prenatal cerebellar insult, and represent disruptions. We reviewed the clinical records and MR findings of six patients with a cerebellar cleft, two of whom also had prenatal MRI at 24 weeks of gestation. The clefts were located in the left cerebellar hemisphere in five cases, in the right in one patient. Other typical findings included disorderly alignment of the cerebellar folia and fissures, irregular gray/white matter junction, and abnormal arborization of the white matter in all patients. The cerebellar cleft extended into the fourth ventricle in three cases, and in two children cystic cortical lesions were seen. Supratentorial schizencephaly was found in two patients. In two patients there was a documented fetal cerebellar hemorrhage at 24 weeks of gestation. We conclude that cerebellar clefts are residual changes resulting from a prenatal cerebellar insult and consequently represent disruptions rather than primary malformations. The supratentorial findings are also in agreement with an acquired lesion. The outcome in these children was variable, mainly depending of the presence of supratentorial lesions.