117 resultados para ENAMEL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Over 15 years have passed since an enamel matrix derivative (EMD) was introduced as a biologic agent capable of periodontal regeneration. Histologic and controlled clinical studies have provided evidence for periodontal regeneration and substantial clinical improvements following its use. The purpose of this review article was to perform a systematic review comparing the eff ect of EMD when used alone or in combination with various types of bone grafting material. DATA SOURCES A literature search was conducted on several medical databases including Medline, EMBASE, LILACS, and CENTRAL. For study inclusion, all studies that used EMD in combination with a bone graft were included. In the initial search, a total of 820 articles were found, 71 of which were selected for this review article. Studies were divided into in vitro, in vivo, and clinical studies. The clinical studies were subdivided into four subgroups to determine the eff ect of EMD in combination with autogenous bone, allografts, xenografts, and alloplasts. RESULTS The analysis from the present study demonstrates that while EMD in combination with certain bone grafts is able to improve the regeneration of periodontal intrabony and furcation defects, direct evidence supporting the combination approach is still missing. CONCLUSION Further controlled clinical trials are required to explain the large variability that exists amongst the conducted studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS The aims of this double-blind, controlled, crossover study were to assess the influence of food preservatives on in situ dental biofilm growth and vitality, and to evaluate their influence on the ability of dental biofilm to demineralize underlying enamel over a period of 14 days. MATERIALS AND METHODS Twenty volunteers wore appliances with six specimens each of bovine enamel to build up intra-oral biofilms. During four test cycles of 14 days, the subjects had to place the appliance in one of the assigned controls or active solutions twice a day for a minute: negative control 0.9 % saline, 0.1 % benzoate (BA), 0.1 % sorbate (SA) and 0.2 % chlorhexidine (CHX positive control). After 14 days, the biofilms on two of the slabs were stained to visualize vital and dead bacteria to assess biofilm thickness (BT) and bacterial vitality (BV). Further, slabs were taken to determine mineral loss (ML), by quantitative light-induced laser fluorescence (QLF) and transversal microradiography (TMR), moreover the lesion depths (LD). RESULTS Nineteen subjects completed all test cycles. Use of SA, BA and CHX resulted in a significantly reduced BV compared to NaCl (p < 0.001). Only CHX exerted a statistically significant retardation in BT as compared to saline. Differences between SA and BA were not significant (p > 0.05) for both parameters. TMR analysis revealed the highest LD values in the NaCl group (43.6 ± 44.2 μm) and the lowest with CHX (11.7 ± 39.4 μm), while SA (22.9 ± 45.2 μm) and BA (21.4 ± 38.5 μm) lay in between. Similarly for ML, the highest mean values of 128.1 ± 207.3 vol% μm were assessed for NaCl, the lowest for CHX (-16.8 ± 284.2 vol% μm), while SA and BA led to values of 83.2 ± 150.9 and 98.4 ± 191.2 vol% μm, respectively. With QLF for both controls, NaCl (-33.8 ± 101.3 mm(2) %) and CHX (-16.9 ± 69.9 mm(2) %), negative values were recorded reflecting a diminution of fluorescence, while positive values were found with SA (33.9 ± 158.2 mm(2) %) and BA (24.8 ± 118.0 mm(2) %) depicting a fluorescence gain. These differences were non-significant (p > 0.05). CONCLUSION The biofilm model permited the assessment of undisturbed oral biofilm formation influenced by antibacterial components under clinical conditions for a period of 14 days. An effect of BA and SA on the demineralization of enamel could be demonstrated by TMR and QLF, but these new findings have to be seen as a trend. As part of our daily diet, these preservatives exert an impact on the metabolism of the dental biofilm, and therefore may even influence demineralization processes of the underlying dental enamel in situ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES The aim of this study was to assess the preventive effect of a fluoride-, stannous- and chitosan-containing (F/Sn/chitosan-) toothpaste (TP) on initial enamel erosion and abrasion. METHODS In total, 150 human premolar enamel specimens were ground, polished and divided into 5 toothpaste/rinse groups (n=30): (G1) placebo-TP/tap water, (G2) sodium fluoride (NaF-) TP/tap water, (G3) F/Sn/chitosan-TP/tap water, (G4) F/Sn/chitosan-TP/Sn-rinse, (G5) NaF-TP/NaF-rinse. The 8-day erosion-abrasion cyclic treatment (one cycle/day) consisted of incubating the samples in artificial saliva (30min), then submitting the samples to toothbrush abrasion (2min incubation in toothpaste slurry; brushing with 20 toothbrush strokes) and rinsing (2min; 10ml) with the respective solution: tap water (G1-G3), Sn-rinse (G4) or NaF-rinse (G5). Afterwards, the samples were submitted to erosion (2min; 30ml 1% citric acid, pH=3.6). Surface microhardness (SMH) was measured initially and after every abrasion and erosion treatment. Enamel substance loss was calculated after each abrasion. Non-parametric ANOVA followed by Wilcoxon rank tests were used for analysis. RESULTS G1 presented the greatest SMH decrease, while G4 presented the least SMH decrease (p<0.001). G3 had a similar SMH decrease to G2 and G5. Substance loss was significantly lower in G4 than all other groups (p<0.05), closely followed by G3. Both G2 and G5 showed similar calculated enamel substance loss to G1. CONCLUSION The treatment with F/Sn/chitosan-TP and tap water provided a similar SMH decrease to both NaF-TP groups, but significantly lower substance loss. F/Sn/Chitosan-TP and Sn-rinse showed a better preventive effect, which promoted less SMH decrease and reduced substance loss. CLINICAL SIGNIFICANCE The toothpaste containing fluoride, stannous and chitosan shows promising results in reducing substance loss from erosion and abrasion. The combination of this toothpaste with the stannous-containing rinse showed even better prevention against erosion-abrasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tooth surface modification is a potential method of preventing dental erosion, a form of excessive tooth wear facilitated by softening of tooth surfaces through the direct action of acids, mainly of dietary origin. We have previously shown that dodecyl phosphates (DPs) effectively inhibit dissolution of native surfaces of hydroxyapatite (the type mineral for dental enamel) and show good substantivity. However, adsorbed saliva also inhibits dissolution and DPs did not augment this effect, which suggests that DPs and saliva interact at the hydroxyapatite surface. In the present study the adsorption and desorption of potassium and sodium dodecyl phosphates or sodium dodecyl sulphate (SDS) to hydroxyapatite and human tooth enamel powder, both native and pre-treated with saliva, were studied by high performance liquid chromatography-mass Spectrometry. Thermo gravimetric analysis was used to analyse residual saliva and surfactant on the substrates. Both DPs showed a higher affinity than SDS for both hydroxyapatite and enamel, and little DP was desorbed by washing with water. SDS was readily desorbed from hydroxyapatite, suggesting that the phosphate head group is essential for strong binding to this substrate. However, SDS was not desorbed from enamel, so that this substrate has surface properties different from those of hydroxyapatite. The presence of a salivary coating had little or no effect on adsorption of the DPs, but treatment with DPs partly desorbed saliva; this could account for the failure of DPs to increase the dissolution inhibition due to adsorbed saliva.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Despite the worldwide increased prevalence of osteoporosis, no data are available evaluating the effect of an enamel matrix derivative (EMD) on the healing of periodontal defects in patients with osteoporosis. This study aims to evaluate whether the regenerative potential of EMD may be suitable for osteoporosis-related periodontal defects. METHODS Forty female Wistar rats (mean body weight: 200 g) were used for this study. An osteoporosis animal model was carried out by bilateral ovariectomy (OVX) in 20 animals. Ten weeks after OVX, bilateral fenestration defects were created at the buccal aspect of the first mandibular molar. Animals were randomly assigned to four groups of 10 animals per group: 1) control animals with unfilled periodontal defects; 2) control animals with EMD-treated defects; 3) OVX animals with unfilled defects; and 4) OVX animals with EMD-treated defects. The animals were euthanized 28 days later, and the percentage of defect fill and thickness of newly formed bone and cementum were assessed by histomorphometry and microcomputed tomography (micro-CT) analysis. The number of osteoclasts was determined by tartrate-resistant acid phosphatase (TRAP), and angiogenesis was assessed by analyzing formation of blood vessels. RESULTS OVX animals demonstrated significantly reduced bone volume in unfilled defects compared with control defects (18.9% for OVX animals versus 27.2% for control animals) as assessed by micro-CT. The addition of EMD in both OVX and control animals resulted in significantly higher bone density (52.4% and 69.2%, respectively) and bone width (134 versus 165μm) compared with untreated defects; however, the healing in OVX animals treated with EMD was significantly lower than that in control animals treated with EMD. Animals treated with EMD also demonstrated significantly higher cementum formation in both control and OVX animals. The number of TRAP-positive osteoclasts did not vary between untreated and EMD-treated animals; however, a significant increase was observed in all OVX animals. The number of blood vessels and percentage of new vessel formation was significantly higher in EMD-treated samples. CONCLUSIONS The results from the present study suggest that: 1) an osteoporotic phenotype may decrease periodontal regeneration; and 2) EMD may support greater periodontal regeneration in patients suffering from the disease. Additional clinical studies are necessary to fully elucidate the possible beneficial effect of EMD for periodontal regeneration in patients suffering from osteoporosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were (1) to assess the amount of fluoride (F) released from varnishes containing calcium glycerophosphate (CaGP) and (2) to assess the effect of the experimental varnishes on in vitro demineralization. Six test groups using 5 varnishes: base varnish (no active ingredients); Duraphat® (2.26% NaF); Duofluorid® (5.63% NaF/CaF2); experimental varnish 1 (1% CaGP/5.63% NaF/CaF2); experimental varnish 2 (5% CaGP/5.63% NaF/CaF2); and no varnish were set up. In stage 1, 60 acrylic blocks were randomly distributed into 6 groups (n = 10). Then 300 µg of each varnish was applied to each block. The blocks were immersed in deionized water, which was changed after 1, 8, 12, 24, 48 and 72 hours. Fluoride concentration in the water was analyzed using a fluoride electrode. In stage 2, 60 bovine enamel samples were distributed into 6 groups (n = 10), and treated with 300 µg of the respective varnish. After 6 h the varnish was removed and the samples were subjected to a 7-day in vitro pH cycle (6 h demineralization/18 h remineralization per day). The demineralization was measured using surface hardness. The results showed that both experimental varnishes released more fluoride than Duofluorid® and Duraphat® (p < 0.05), but Duraphat® showed the best preventive effect by decreasing enamel hardness loss (p < 0.05). Therefore, we conclude that even though (1) the experimental varnishes containing CaGP released greater amounts of F, (2) they did not increase in the preventive effect against enamel demineralization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed at assessing the susceptibility of different tooth types (molar/premolar), surfaces (buccal/lingual) and enamel depths (100, 200, 400 and 600 μm) to initial erosion measured by surface microhardness loss (ΔSMH) and calcium (Ca) release. Twenty molars and 20 premolars were divided into experimental and control groups, cut into lingual/ buccal halves, and ground/polished, removing 100 μm of enamel. The initial surface microhardness (SMH 0 ) was measured on all halves. The experimental group was subjected to 3 consecutive erosive challenges (30 ml/tooth of 1% citric acid, pH 3.6, 25 ° C, 1 min). After each challenge, ΔSMH and Ca release were measured. The same teeth were consecutively ground to 200, 400 and 600 μm depths, and the experimental group underwent 3 erosive challenges at each depth. No difference was found in SMH 0 between experimental and control groups. Multivariate nonparametric ANOVA showed no significant differences between lingual and buccal surfaces in ΔSMH (p = 0.801) or Ca release (p = 0.370). ΔSMH was significantly greater in premolars than in molars (p < 0.05), but not different with respect to enamel depth. Ca release decreased significantly with increasing depth. Regression between Ca release and ΔSMH at 100 μm depth showed lower slope and r 2 value, associated with greater Ca release values. At 200-600 μm depths, moderately large r 2 values were observed (0.651-0.830). In conclusion, different teeth and enamel depths have different susceptibility to erosion, so when Ca release is used to measure erosion, the depth of the test facet in enamel should be standardized, whereas this is less important if ΔSMH is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Calcium glycerophosphate (CaGP) was added to fluoride varnishes to analyze their preventive effect on initial enamel erosion and fluoride uptake: potassium hydroxide (KOH)-soluble and KOH-insoluble fluoride bound to enamel. MATERIALS AND METHODS This study was carried out in two parts. Part 1: 108 enamel samples were randomly distributed into six varnish groups: base varnish (no active ingredients); Duraphat® (2.26 %NaF); Duofluorid® (5.63 %NaF/CaF2); experimental varnish 1 (1 %CaGP/5.63 %NaF/CaF2); experimental varnish 2 (5 %CaGP/5.63 %NaF/CaF2); and no varnish. Cyclic demineralization (90 s; citric acid, pH = 3.6) and remineralization (4 h) was made once a day, for 3 days. Change in surface microhardness (SMH) was measured. Part 2: 60 enamel samples were cut in half and received no varnish (control) or a layer of varnish: Duraphat®, Duofluorid®, experimental varnishes 1 and 2. Then, KOH-soluble and KOH-insoluble fluoride were analyzed using an electrode. RESULTS After cyclic demineralization, SMH decreased in all samples, but Duraphat® caused less hardness loss. No difference was observed between varnishes containing CaGP and the other varnishes. Similar amounts of KOH-soluble and insoluble fluoride was found in experimental varnish 1 and Duofluorid®, while lower values were found for experimental varnish 2 and Duraphat®. CONCLUSION The addition of CaGP to fluoride varnishes did not increase fluoride bound to enamel and did not enhance their protection against initial enamel erosion. CLINICAL RELEVANCE We observe that the fluoride varnishes containing CaGP do not promote greater amounts of fluoride bound to enamel and that fluoride bound to enamel may not be closely related to erosion prevention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE This study evaluated the differences in enamel color change, surface hardness, elastic modulus, and surface roughness between treatments with four bleaching gels containing carbamide peroxide (two at 10% and one each at 35%, and 45%) and two bleaching gels containing hydrogen peroxide (two at 40%). METHODS Enamel specimens were bleached and color changes were measured. Color change was calculated using either ΔE or the Bleaching Index (BI). Then, surface hardness, elastic modulus, and surface roughness of the enamel specimens were evaluated. All measurements were performed at baseline and directly after the first bleaching treatment for all carbamide peroxide- and hydrogen peroxide-containing bleaching gels. In addition, final measurements were made 24 hours after each of a total of 10 bleaching treatments for carbamide peroxide bleaching gels, and 1 week after each of a total of three bleaching treatments for hydrogen peroxide bleaching gels. RESULTS After the last bleaching treatment, respective ΔE scores were 17.6 and 8.2 for the two 10% carbamide peroxide gels, 12.9 and 5.6 for the 45% and 35% carbamide peroxide gels, and 9.6 and 13.9 for the two 40% hydrogen peroxide gels. The respective BI scores were -2.0 and -2.0 for the two 10% carbamide peroxide gels, -3.5 and -1.5 for the 45% and 35% carbamide peroxide gels, and -2.0 and -3.0 for the two 40% hydrogen peroxide gels. Each bleaching gel treatment resulted in significant whitening; however, no significant difference was found among the gels after the last bleaching. Whitening occurred within the first bleaching treatments and did not increase significantly during the remaining treatments. Surface hardness significantly decreased after the last bleaching treatment, when 10% carbamide peroxide was used. Furthermore, significant changes in the elastic modulus or surface roughness occurred only after treatment with 10% carbamide peroxide. CONCLUSION All six bleaching gels effectively bleached the enamel specimens independent of their concentration of peroxide. Gels with low peroxide concentration and longer contact time negatively affected the enamel surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The use of an enamel matrix derivative (EMD) has been shown to enhance periodontal regeneration (e.g., formation of root cementum, periodontal ligament, and alveolar bone). However, in certain clinical situations, the use of EMD alone may not be sufficient to prevent flap collapse or provide sufficient stability of the blood clot. Data from clinical and preclinical studies have demonstrated controversial results after application of EMD combined with different types of bone grafting materials in periodontal regenerative procedures. The aim of the present study is to investigate the adsorption properties of enamel matrix proteins to bone grafts after surface coating with either EMD (as a liquid formulation) or EMD (as a gel formulation). METHODS Three different types of grafting materials, including a natural bone mineral (NBM), demineralized freeze-dried bone allograft (DFDBA), or a calcium phosphate (CaP), were coated with either EMD liquid or EMD gel. Samples were analyzed by scanning electron microscopy or transmission electron microscopy (TEM) using an immunostaining assay with gold-conjugated anti-EMD antibody. Total protein adsorption to bone grafting material was quantified using an enzyme-linked immunosorbent assay (ELISA) kit for amelogenin. RESULTS The adsorption of amelogenin to the surface of grafting material varied substantially based on the carrier system used. EMD gel adsorbed less protein to the surface of grafting particles, which easily dissociated from the graft surface after phosphate-buffered saline rinsing. Analyses by TEM revealed that adsorption of amelogenin proteins were significantly farther from the grafting material surface, likely a result of the thick polyglycolic acid gel carrier. ELISA protein quantification assay demonstrated that the combination of EMD liquid + NBM and EMD liquid + DFDBA adsorbed higher amounts of amelogenin than all other treatment modalities. Furthermore, amelogenin proteins delivered by EMD liquid were able to penetrate the porous surface structure of NBM and DFDBA and adsorb to the interior of bone grafting particles. Grafting materials coated with EMD gel adsorbed more frequently to the exterior of grafting particles with little interior penetration. CONCLUSIONS The present study demonstrates a large variability of adsorbed amelogenin to the surface of bone grafting materials when enamel matrix proteins were delivered in either a liquid formulation or gel carrier. Furthermore, differences in amelogenin adsorption were observed among NBM, DFDBA, and biphasic CaP particles. Thus, the potential for a liquid carrier system for EMD, used to coat EMD, may be advantageous for better surface coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enamel proteins form a scaffold for growing hydroxyapatite crystals during enamel formation. They are then almost completely degraded during enamel maturation, resulting in a protein content of only 1% (w/v) in mature enamel. Nevertheless, this small amount of remaining proteins has important effects on the mechanical and structural properties of enamel and on the electrostatic properties of its surface. To analyze how enamel proteins affect tooth erosion, human enamel specimens were deproteinated. Surface microhardness (SMH), surface reflection intensity (SRI) and calcium release of both deproteinated and control specimens were monitored while continuously eroding them. The deproteination itself already reduced the initial SMH and SRI of the enamel significantly (p < 0.001 and p < 0.01). During the course of erosion, the progression of all three evaluated parameters differed significantly between the two groups (p < 0.001 for each). The deproteinated enamel lost its SMH and SRI faster, and released more calcium than the control group, but these differences were only significant at later stages of erosion, where not only surface softening but surface loss can be observed. We conclude that enamel proteins have a significant effect on erosion, protecting the enamel and slowing down the progression of erosion when irreversible surface loss starts to occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Bone replacement grafting materials play an important role in regenerative dentistry. Despite a large array of tested bone-grafting materials, little information is available comparing the effects of bone graft density on in vitro cell behavior. Therefore, the aim of the present study is to compare the effects of cells seeded on bone grafts at low and high density in vitro for osteoblast adhesion, proliferation, and differentiation. MATERIALS AND METHODS The response of osteoblasts to the presence of a growth factor (enamel matrix derivative, (EMD)) in combination with low (8 mg per well) or high (100 mg per well) bone grafts (BG; natural bone mineral, Bio-Oss®) density, was studied and compared for osteoblast cell adhesion, proliferation, and differentiation as assessed by real-time PCR. Standard tissue culture plastic was used as a control with and without EMD. RESULTS The present study demonstrates that in vitro testing of bone-grafting materials is largely influenced by bone graft seeding density. Osteoblast adhesion was up to 50 % lower when cells were seeded on high-density BG when compared to low-density BG and control tissue culture plastic. Furthermore, proliferation was affected in a similar manner whereby cell proliferation on high-density BG (100 mg/well) was significantly increased when compared to that on low-density BG (8 mg/well). In contrast, cell differentiation was significantly increased on high-density BG as assessed by real-time PCR for markers collagen 1 (Col 1), alkaline phosphatase (ALP), and osteocalcin (OC) as well as alizarin red staining. The effects of EMD on osteoblast adhesion, proliferation, and differentiation further demonstrated that the bone graft seeding density largely controls in vitro results. EMD significantly increased cell attachment only on high-density BG, whereas EMD was able to further stimulate cell proliferation and differentiation of osteoblasts on control culture plastic and low-density BG when compared to high-density BG. CONCLUSION The results from the present study demonstrate that the in vitro conditions largely influence cell behavior of osteoblasts seeded on bone grafts and in vitro testing. CLINICAL RELEVANCE These results also illustrate the necessity for careful selection of bone graft seeding density to optimize in vitro testing and provide the clinician with a more accurate description of the osteopromotive potential of bone grafts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The aim of the present systematic review and meta-analysis was to assess the clinical efficacy of regenerative periodontal surgery of intrabony defects using a combination of enamel matrix derivative (EMD) and bone graft compared with that of EMD alone. MATERIALS AND METHODS The Cochrane Oral Health Group specialist trials, MEDLINE, and EMBASE databases were searched for entries up to February 2014. The primary outcome was gain of clinical attachment (CAL). Weighted means and forest plots were calculated for CAL gain, probing depth (PD), and gingival recession (REC). RESULTS Twelve studies reporting on 434 patients and 548 intrabony defects were selected for the analysis. Mean CAL gain amounted to 3.76 ± 1.07 mm (median 3.63 95 % CI 3.51-3.75) following treatment with a combination of EMD and bone graft and to 3.32 ± 1.04 mm (median 3.40; 95 % CI 3.28-3.52) following treatment with EMD alone. Mean PD reduction measured 4.22 ± 1.20 mm (median 4.10; 95 % CI 3.96-4.24) at sites treated with EMD and bone graft and yielded 4.12 ± 1.07 mm (median 4.00; 95 % CI 3.88-4.12) at sites treated with EMD alone. Mean REC increase amounted to 0.76 ± 0.42 mm (median 0.63; 95 % CI 0.58-0.68) at sites treated with EMD and bone graft and to 0.91 ± 0.26 mm (median 0.90; 95 % CI 0.87-0.93) at sites treated with EMD alone. CONCLUSIONS Within their limits, the present results indicate that the combination of EMD and bone grafts may result in additional clinical improvements in terms of CAL gain and PD reduction compared with those obtained with EMD alone. The potential influence of the chosen graft material or of the surgical procedure (i.e., flap design) on the clinical outcomes is unclear. CLINICAL RELEVANCE The present findings support the use of EMD and bone grafts for the treatment of intrabony periodontal defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to compare different bacterial models for in vitro induction of non-cavitated enamel caries-like lesions by microhardness and polarized light microscopy analyses. One hundred blocks of bovine enamel were randomly divided into four groups (n = 25) according to the bacterial model for caries induction: (A) Streptococcus mutans, (B) S. mutans and Lactobacillus acidophilus, (C) S. mutans and L. casei, and (D) S. mutans, L. acidophilus, and L. casei. Within each group, the blocks were randomly divided into five subgroups according to the duration of the period of caries induction (4-20 days). The enamel blocks were immersed in cariogenic solution containing the microorganisms, which was changed every 48 h. Groups C and D presented lower surface hardness values (SMH) and higher area of hardness loss (ΔS) after the cariogenic challenge than groups A and B (P < 0.05). As regards lesion depth, under polarized light microscopy, group A presented significantly lower values, and groups C and D the highest values. Group B showed a higher value than group A (P < 0.05). Groups A and B exhibited subsurface caries lesions after all treatment durations, while groups C and D presented erosion-type lesions with surface softening. The model using S. mutans, whether or not it was associated with L. acidophilus, was less aggressive and may be used for the induction of non-cavitated enamel caries-like lesions. The optimal period for inducing caries-like lesions was 8 days.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to compare fissure sealant quality after mechanical conditioning of erbium-doped yttrium aluminium garnet (Er:YAG) laser or air abrasion prior to chemical conditioning of phosphoric acid etching or of a self-etch adhesive. Twenty-five permanent molars were initially divided into three groups: control group (n = 5), phosphoric acid etching; test group 1 (n = 10), air abrasion; and test group 2, (n = 10) Er:YAG laser. After mechanical conditioning, the test group teeth were sectioned buccolingually and the occlusal surface of one half tooth (equal to one sample) was acid etched, while a self-etch adhesive was applied on the other half. The fissure system of each sample was sealed, thermo-cycled and immersed in 5% methylene dye for 24 h. Each sample was sectioned buccolingually, and one slice was analysed microscopically. Using specialized software microleakage, unfilled margin, sealant failure and unfilled area proportions were calculated. A nonparametric ANOVA model was applied to compare the Er:YAG treatment with that of air abrasion and the self-etch adhesive with phosphoric acid (α = 0.05). Test groups were compared to the control group using Wilcoxon rank sum tests (α = 0.05). The control group displayed significantly lower microleakage but higher unfilled area proportions than the Er:YAG laser + self-etch adhesive group and displayed significantly higher unfilled margin and unfilled area proportions than the air-abrasion + self-etch adhesive group. There was no statistically significant difference in the quality of sealants applied in fissures treated with either Er:YAG laser or air abrasion prior to phosphoric acid etching, nor in the quality of sealants applied in fissures treated with either self-etch adhesive or phosphoric acid following Er:YAG or air-abrasion treatment.