80 resultados para ELECTROSPAY IONIZATION TANDEM MASS SPECTROMETRY(ESI-MSn)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mastitic milk is associated with increased bovine protease activity, such as that from plasmin and somatic cell enzymes, which cause proteolysis of the caseins and may reduce cheese yield and quality. The aim of this work was to characterize the peptide profile resulting from proteolysis in a model mastitis system and to identify the proteases responsible. One quarter of each of 2 cows (A and B) was infused with lipoteichoic acid from Staphylococcus aureus. The somatic cell counts of the infused quarters reached a peak 6h after infusion, whereas plasmin activity of those quarters also increased, reaching a peak after 48 and 12h for cow A and B, respectively. Urea-polyacrylamide gel electrophoretograms of milk samples of cow A and B obtained at different time points after infusion and incubated for up to 7 d showed almost full hydrolysis of beta- and alpha(S1)-casein during incubation of milk samples at peak somatic cell counts, with that of beta-casein being faster than that of alpha(S1)-casein. Two-dimensional gel electrophoretograms of milk 6h after infusion with the toxin confirmed hydrolysis of beta- and alpha(S1)-casein and the appearance of lower-molecular-weight products. Peptides were subsequently separated by reversed-phase HPLC and handmade nanoscale C(18) columns, and identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. Twenty different peptides were identified and shown to originate from alpha(s1)- and beta-casein. Plasmin, cathepsin B and D, elastase, and amino- and carboxypeptidases were suggested as possible responsible proteases based on the peptide cleavage sites. The presumptive activity of amino- and carboxypeptidases is surprising and may indicate the activity of cathepsin H, which has not been reported in milk previously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma brucei is the causative agent of human African sleeping sickness and Nagana in cattle. In addition to being an important pathogen T. brucei has developed into a model system in cell biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contradictory results from clinical trials that examined the role of vitamin E in chronic disease could be a consequence of interindividual variation, caused by factors such as xenobiotic use. Cometabolism of vitamin E with other pharmaceutical products could affect the bioavailability of the drug. Thus, it is necessary to understand fully the metabolic routes and biological endpoints of vitamin E.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrauterine growth restriction (IUGR) is defined as a condition in which the fetus does not reach its genetically given growth potential, resulting in low birth weight. IUGR is an important cause of perinatal morbidity and mortality, thus contributing substantially to medically indicated preterm birth in order to prevent fetal death. We subjected umbilical cord blood serum samples either belonging to the IUGR group (n = 15) or to the control group (n = 15) to fractionation by affinity chromatography using a bead system with hydrophobic interaction capabilities. So prepared protein mixtures were analyzed by MALDI-TOF mass spectrometric profiling. The six best differentiating ion signals at m/z 8205, m/z 8766, m/z 13 945, m/z 15 129, m/z 15 308, and m/z 16 001 were collectively assigned as IUGR proteome signature. Separation confidence of our IUGR proteome signature reached a sensitivity of 0.87 and a specificity of 0.93. Assignment of ion signals in the mass spectra to specific proteins was substantiated by SDS-PAGE in conjunction with peptide mass fingerprint analysis of cord blood serum proteins. One constituent of this proteome signature, apolipoprotein C-III(0) , a derivative lacking glycosylation, has been found more abundant in the IUGR cord blood serum samples, irrespective of gestational age. Hence, we suggest apolipoprotein C-III(0) as potential key-marker of the here proposed IUGR proteome signature, as it is a very low-density lipoprotein (VLDL) and high-density lipoprotein (HDL) member and as such involved in triglyceride metabolism that itself is discussed as being of importance in IUGR pathogenesis. Our results indicate that subtle alterations in protein glycosylation need to be considered for improving our understanding of the pathomechanisms in IUGR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a fast and unambiguous method for haplotyping the (TG)mTn repeat in IVS8 and determining three other single nucleotide polymorphisms (SNPs) in exons 10, 14a and 24 in the cystic fibrosis transmembrane conductance regulator (CFTR) gene affecting correct splicing of the CFTR pre-mRNA using primer extension and mass spectrometry. The diagnostic products are generated by primer extension (PEX) reactions, which require a single detection primer complementary to a region downstream of a target strand's variable site. On addition of a polymerase and an appropriate mixture of dNTP's and 2', 3'-dideoxynucleotide triphosphates (ddNTP's), the primer is extended through the mutation region until the first ddNTP is incorporated and the mass of the extension products determines the composition of the variable site. Analysis of patient DNA assigned the correct and unambiguous haplotype for the (TG)mTn repeat in intron 8 of the CFTR gene. Additional crucial SNPs influencing correct splicing in exon 10, 14 and 24 can easily be detected by biplexing the assay to genotype allelic variants important for correct splicing of the CFTR pre-mRNA. Different PEX reactions with subsequent mass spectrometry generate sufficient data, to enable unambiguous and easy haplotyping of the (TG)mTn repeat in the CFTR gene. The method can be easily extended to the inclusion of additional SNPs of interest by biplexing some of the PEX reactions. All experimental steps required for PEX are amenable to the high degree of automation desirable for a high-throughput diagnostic setting, facilitating the work of clinicians involved in the diagnosis of non-classic cystic fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Moraxella catarrhalis is a major mucosal pathogen of the human respiratory tract both in children and in adults. Two subpopulations of this organism have been described that differ in 16S rRNA gene sequence and virulence traits. Three 16S rRNA types have been defined. 2-DE followed by protein identification by MS revealed significant differences in the outer membrane protein (OMP) patterns of each M. catarrhalis 16S rRNA type. Approximately 130 features were detected on the 2-DE map of each M. catarrhalis 16S rRNA type. However, only 50 features were expressed by all strains. Furthermore, direct profiling of isolated OMP using MALDI-TOF MS resulted in a characteristic spectral fingerprint for each 16S rRNA type. Fingerprints remained identical when intact cells instead of isolated OMP were analyzed. This finding suggests that the source of desorbed ions is the outer membrane. Based on the fingerprint we were able to assign 18 well-characterized clinical M. catarrhalis isolates to the correct subpopulation. Therefore, MALDI-TOF of intact M. catarrhalis provides a rapid and robust tool for M. catarrhalis strain typing that could be applied in epidemiological studies.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Radiation metabolomics employing mass spectral technologies represents a plausible means of high-throughput minimally invasive radiation biodosimetry. A simplified metabolomics protocol is described that employs ubiquitous gas chromatography-mass spectrometry and open source software including random forests machine learning algorithm to uncover latent biomarkers of 3 Gy gamma radiation in rats. Urine was collected from six male Wistar rats and six sham-irradiated controls for 7 days, 4 prior to irradiation and 3 after irradiation. Water and food consumption, urine volume, body weight, and sodium, potassium, calcium, chloride, phosphate and urea excretion showed major effects from exposure to gamma radiation. The metabolomics protocol uncovered several urinary metabolites that were significantly up-regulated (glyoxylate, threonate, thymine, uracil, p-cresol) and down-regulated (citrate, 2-oxoglutarate, adipate, pimelate, suberate, azelaate) as a result of radiation exposure. Thymine and uracil were shown to derive largely from thymidine and 2'-deoxyuridine, which are known radiation biomarkers in the mouse. The radiation metabolomic phenotype in rats appeared to derive from oxidative stress and effects on kidney function. Gas chromatography-mass spectrometry is a promising platform on which to develop the field of radiation metabolomics further and to assist in the design of instrumentation for use in detecting biological consequences of environmental radiation release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fenofibrate, widely used for the treatment of dyslipidemia, activates the nuclear receptor, peroxisome proliferator-activated receptor alpha. However, liver toxicity, including liver cancer, occurs in rodents treated with fibrate drugs. Marked species differences occur in response to fibrate drugs, especially between rodents and humans, the latter of which are resistant to fibrate-induced cancer. Fenofibrate metabolism, which also shows species differences, has not been fully determined in humans and surrogate primates. In the present study, the metabolism of fenofibrate was investigated in cynomolgus monkeys by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS)-based metabolomics. Urine samples were collected before and after oral doses of fenofibrate. The samples were analyzed in both positive-ion and negative-ion modes by UPLC-QTOFMS, and after data deconvolution, the resulting data matrices were subjected to multivariate data analysis. Pattern recognition was performed on the retention time, mass/charge ratio, and other metabolite-related variables. Synthesized or purchased authentic compounds were used for metabolite identification and structure elucidation by liquid chromatographytandem mass spectrometry. Several metabolites were identified, including fenofibric acid, reduced fenofibric acid, fenofibric acid ester glucuronide, reduced fenofibric acid ester glucuronide, and compound X. Another two metabolites (compound B and compound AR), not previously reported in other species, were characterized in cynomolgus monkeys. More importantly, previously unknown metabolites, fenofibric acid taurine conjugate and reduced fenofibric acid taurine conjugate were identified, revealing a previously unrecognized conjugation pathway for fenofibrate.