99 resultados para Drought regime
Resumo:
Water is an important resource for plant life. Since climate scenarios for Switzerland predict an average reduction of 20% in summer precipitation until 2070, understanding ecosystem responses to water shortage, e.g. in terms of plant productivity, is of major concern. Thus, we tested the effects of simulated summer drought on three managed grasslands along an altitudinal gradient in Switzerland from 2005 to 2007, representing typical management intensities at the respective altitude. We assessed the effects of experimental drought on above- and below-ground productivity, stand structure (LAI and vegetation height) and resource use (carbon and water). Responses of community above-ground productivity to reduced precipitation input differed among the three sites but scaled positively with total annual precipitation at the sites (R2=0.85). Annual community above-ground biomass productivity was significantly reduced by summer drought at the alpine site receiving the least amount of annual precipitation, while no significant decrease (rather an increase) was observed at the pre-alpine site receiving highest precipitation amounts in all three years. At the lowland site (intermediate precipitation sums), biomass productivity significantly decreased in response to drought only in the third year, after showing increased abundance of a drought tolerant weed species in the second year. No significant change in below-ground biomass productivity was observed at any of the sites in response to simulated summer drought. However, vegetation carbon isotope ratios increased under drought conditions, indicating an increase in water use efficiency. We conclude that there is no general drought response of Swiss grasslands, but that sites with lower annual precipitation seem to be more vulnerable to summer drought than sites with higher annual precipitation, and thus site-specific adaptation of management strategies will be needed, especially in regions with low annual precipitation.
Resumo:
The dynamics of aseasonal lowland dipterocarp forest in Borneo is influenced by perturbation from droughts. These events might be increasing in frequency and intensity in the future. This paper describes drought-affected dynamics between 1986 and 2001 in Sabah, Malaysia, and considers how it is possible, reliably and accurately, to measure both coarse- and fine-scale responses of the forest. Some fundamental concerns about methodology and data analysis emerge. In two plots forming 8 ha, mortality, recruitment, and stem growth rates of trees ≥10 cm gbh (girth at breast height) were measured in a ‘pre-drought’ period (1986–1996), and in a period (1996–2001) including the 1997–1998 ENSO-drought. For 2.56 ha of subplots, mortality and growth rates of small trees (10–<50 cm gbh) were found also for two sub-periods (1996–1999, 1999–2001). A total of c. 19 K trees were recorded. Mortality rate increased by 25% while both recruitment and relative growth rates increased by 12% for all trees at the coarse scale. For small trees, at the fine scale, mortality increased by 6% and 9% from pre-drought to drought and on to ‘post-drought’ sub-periods. Relative growth rates correspondingly decreased by 38% and increased by 98%. Tree size and topography interacted in a complex manner with between-plot differences. The forest appears to have been sustained by off-setting elevated tree mortality by highly resilient stem growth. This last is seen as the key integrating tree variable which links the external driver (drought causing water stress) and population dynamics recorded as mortality and recruitment. Suitably sound measurements of stem girth, leading to valid growth rates, are needed to understand and model tree dynamic responses to perturbations. The proportion of sound data, however, is in part determined by the drought itself.
Resumo:
Drought perturbation driven by the El Niño Southern Oscillation (ENSO) is a principal stochastic variable determining the dynamics of lowland rain forest in S.E. Asia. Mortality, recruitment and stem growth rates at Danum in Sabah (Malaysian Borneo) were recorded in two 4-ha plots (trees ≥ 10 cm gbh) for two periods, 1986–1996 and 1996–2001. Mortality and growth were also recorded in a sample of subplots for small trees (10 to <50 cm gbh) in two sub-periods, 1996–1999 and 1999–2001. Dynamics variables were employed to build indices of drought response for each of the 34 most abundant plot-level species (22 at the subplot level), these being interval-weighted percentage changes between periods and sub-periods. A significant yet complex effect of the strong 1997/1998 drought at the forest community level was shown by randomization procedures followed by multiple hypothesis testing. Despite a general resistance of the forest to drought, large and significant differences in short-term responses were apparent for several species. Using a diagrammatic form of stability analysis, different species showed immediate or lagged effects, high or low degrees of resilience or even oscillatory dynamics. In the context of the local topographic gradient, species’ responses define the newly termed perturbation response niche. The largest responses, particularly for recruitment and growth, were among the small trees, many of which are members of understorey taxa. The results bring with them a novel approach to understanding community dynamics: the kaleidoscopic complexity of idiosyncratic responses to stochastic perturbations suggests that plurality, rather than neutrality, of responses may be essential to understanding these tropical forests. The basis to the various responses lies with the mechanisms of tree-soil water relations which are physiologically predictable: the timing and intensity of the next drought, however, is not. To date, environmental stochasticity has been insufficiently incorporated into models of tropical forest dynamics, a step that might considerably improve the reality of theories about these globally important ecosystems.
Resumo:
Question: Is stomatal regulation specific for climate and tree species, and does it reveal species-specific responses to drought? Is there a link to vegetation dynamics? Location: Dry inner alpine valley, Switzerland Methods: Stomatal aperture (θE) of Pinus sylvestris, Quercus pubescens, Juniperus communis and Picea abies were continuously estimated by the ratio of measured branch sap flow rates to potential transpiration rates (adapted Penman-Monteith single leaf approach) at 10-min intervals over four seasons. Results: θE proved to be specific for climate and species and revealed distinctly different drought responses: Pinus stomata close disproportionately more than neighbouring species under dry conditions, but has a higher θE than the other species when weather was relatively wet and cool. Quercus keeps stomata more open under drought stress but has a lower θE under humid conditions. Juniperus was most drought-tolerant, whereas Picea stomata close almost completely during summer. Conclusions: The distinct microclimatic preferences of the four tree species in terms of θE strongly suggest that climate (change) is altering tree physiological performances and thus species-specific competitiveness. Picea and Pinus currently live at the physiological limit of their ability to withstand increasing temperature and drought intensities at the sites investigated, whereas Quercus and Juniperus perform distinctly better. This corresponds, at least partially, with regional vegetation dynamics: Pinus has strongly declined, whereas Quercus has significantly increased in abundance in the past 30 years. We conclude that θE provides an indication of a species' ability to cope with current and predicted climate.
Resumo:
A decision support system based on a neural network approach is proposed to advise on insulin regime and dose adjustment for type 1 diabetes patients.
Resumo:
This paper analyzes the economic impacts of summer drought on Swiss grassland production. We combine field trial data from drought experiments in three different grasslands in Switzerland with site-specific information on economic costs and benefits. The analysis focuses on the economic implications of drought effects on grassland yields as well as grassland composition. In agreement with earlier studies, we found rather heterogeneous yield effects of drought on Swiss grassland systems, with significantly reduced yields as a response to drought at the lowland and sub-alpine sites, but increased yields at the wetter pre-alpine site. Relative yield losses were highest at the sub-alpine site (with annual yield losses of up to 37 %). However, because income from grassland production at extensive sites relies to a large extent on ecological direct payments, even large yield losses had only limited implications in terms of relative profit reductions. In contrast, negative drought impacts at the most productive, intensively managed lowland site were dominant, with average annual drought-induced profit margin reductions of about 28 %. This is furthermore emphasized if analyzing the farm level perspective of drought impacts. Combining site-specific effects at the farm level, we found that in particular farms with high shares of lowland grassland sites suffer from summer droughts in terms of farm-level fodder production and profit margins. Moreover, our results showed that the higher competitiveness of weeds (broad-leaved dock) under drought conditions will require increasing attention on weed control measures in future grassland production systems. Taking into account that the risk of drought occurrence is expected to increase in the coming years, additional instruments to cope with drought risks in fodder production and finally farmers’ income have to be developed.
Resumo:
According to climate models, drier summers must be expected more frequently in Central Europe during the next decades, which may influence plant performance and competition in grassland. The overall source–sink relations in plants, especially allocation of solutes to above- and below-ground parts, may be affected by drought. To investigate solute export from a given leaf of broadleaf dock, a solution containing 57Co and 65Zn was introduced through a leaf flap. The export from this leaf was detected by analysing radionuclide contents in various plant parts. Less label was allocated to new leaves and more to roots under drought. The observed alterations of source–sink relations in broadleaf dock were reversible during a subsequent short period of rewatering. These findings suggest an increased resource allocation to roots under drought improving the functionality of the plants.
Resumo:
Tree populations at the rear edge of species distribution are sensitive to climate stress and drought. However, growth responses of these tree populations to those stressors may vary along climatic gradients. To analyze growth responses to climate and drought using dendrochronology in rear-edge Pinus nigra populations located along an aridity gradient. Tree-ring width chronologies were built for the twentieth century and related to monthly climatic variables, a drought index (Standardized Precipitation-Evapotranspiration Index), and two atmospheric circulation patterns (North Atlantic and Western Mediterranean Oscillations). Growth was enhanced by wet and cold previous autumns and warm late winters before tree-ring formation. The influence of the previous year conditions on growth increased during the past century. Growth was significantly related to North Atlantic and Western Mediterranean Oscillations in two out of five sites. The strongest responses of growth to the drought index were observed in the most xeric sites. Dry conditions before tree-ring formation constrain growth in rear-edge P. nigra populations. The comparisons of climate-growth responses along aridity gradients allow characterizing the sensitivity of relict stands to climate warming.
Resumo:
Reverse transcribed RNAs coding for YnKn, YnSKn, SKn, and KS dehydrin types in drought-stressed white clover (Trifolium repens) were identified and characterized. The nucleotide analyses revealed the complex nature of dehydrin-coding sequences, often featured with alternative start and stop codons within the open reading frames, which could be a prerequisite for high variability among the transcripts originating from a single gene. For some dehydrin sequences, the existence of natural antisense transcripts was predicted. The differential distribution of dehydrin homologues in roots and leaves from a single white clover stolon under normal and drought conditions was evaluated by semi-quantitative RT-PCR and immunoblots with antibodies against the conserved K-, Y- and S-segments. The data suggest that different dehydrin classes have distinct roles in the drought stress response and vegetative development, demonstrating some specific characteristic features. Substantial levels of YSK-type proteins with different molecular weights were immunodetected in the non-stressed developing leaves. The acidic SK2 and KS dehydrin transcripts exhibited some developmental gradient in leaves. A strong increase of YK transcripts was documented in the fully expanded leaves and roots of drought-stressed individuals. The immunodetected drought-induced signals imply that Y- and K-segment containing dehydrins could be the major inducible Late Embryogenesis Abundant class 2 proteins (LEA 2) that accumulate predominantly under drought.
Resumo:
The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV is evaluated up to NLO in Standard Model couplings. The results apply in the so-called relativistic regime, referring parametrically to a mass M ~ πT, generalizing thereby previous NLO results which only apply in the non-relativistic regime M ≫ πT. The non-relativistic expansion is observed to converge for M ≳ 15T, but the smallness of any loop corrections allows it to be used in practice already for M ≳ 4T. In the latter regime any non-covariant dependence of the differential rate on the spatial momentum is shown to be mild. The loop expansion breaks down in the ultrarelativistic regime M ≪ πT, but after a simple mass resummation it nevertheless extrapolates reasonably well towards a result obtained previously through complete LPM resummation, apparently confirming a strong enhancement of the rate at high temperatures (which facilitates chemical equilibration). When combined with other ingredients the results may help to improve upon the accuracy of leptogenesis computations operating above the electroweak scale.
Resumo:
Recent studies on environmental regimes suggest that important lessons and policy recommendations may be drawn from the functioning of the multilateral trading regime. This brief compares the needs and goals of the trade and environment regimes, and discusses how insights from over sixty years of experience of the multilateral trading system might provide ideas for redesigning the architecture of the international environmental regime. It further calls for a better dialogue and improved complementarities between the two fields in order to enhance coherence within international law.