110 resultados para Diffusion tensor imaging (DTI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD). However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level) the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the SMA-proper, the primary motor cortex (M1), the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD) in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about the neurobiology of hypokinesia in schizophrenia. Therefore, the aim of this study was to investigate alterations of white matter motor pathways in schizophrenia and to relate our findings to objectively measured motor activity. We examined 21 schizophrenia patients and 21 healthy controls using diffusion tensor imaging and actigraphy. We applied a probabilistic fibre tracking approach to investigate pathways connecting the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the supplementary motor area proper (SMA-proper), the primary motor cortex (M1), the caudate nucleus, the striatum, the pallidum and the thalamus. Schizophrenia patients had lower activity levels than controls. In schizophrenia we found higher probability indices forming part of a bundle of interest (PIBI) in pathways connecting rACC, pre-SMA and SMA-proper as well as in pathways connecting M1 and pre-SMA with caudate nucleus, putamen, pallidum and thalamus and a reduced spatial extension of motor pathways in schizophrenia. There was a positive correlation between PIBI and activity level in the right pre-SMA-pallidum and the left M1-thalamus connection in healthy controls, and in the left pre-SMA-SMA-proper pathway in schizophrenia. Our results point to reduced volitional motor activity and altered motor pathway organisation in schizophrenia. The identified associations between the amount of movement and structural connectivity of motor pathways suggest dysfunction of cortico-basal ganglia pathways in the pathophysiology of hypokinesia in schizophrenia. Schizophrenia patients may use cortical pathways involving the supplementary motor area to compensate for basal ganglia dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cerebral disconnectivity due to white matter alterations in patients with chronic schizophrenia assessed by diffusion tensor imaging has been reported previously. The aim of this preliminary study is to investigate whether cerebral disconnectivity can be detected as early as the first episode of schizophrenia. Intervoxel coherence values were compared by voxel-based t test in 12 patients with first episode schizophrenia and 12 age- and gender-matched control groups. We detected 14 circumscribed significant clusters (P < 0.02), 3 of them with higher, and 11 of them with lower IC values for patients with schizophrenia than for healthy control groups. We interpret these white matter alterations in different regions to be disconnected fiber tracts already present early in schizophrenic disease progression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dysfunctions of the hippocampus have been suggested to be related to schizophrenia, and reduced connectivity with other brain regions may be a key for the pathophysiology. The aim of this study was to investigate the effect of white matter anomalies in the hippocampus, as a sign of altered connectivity, on the brain electrical activity. We investigated seven first episode schizophrenic patients and seven age, gender and education-matched controls with diffusion tensor imaging and resting EEG. Fractional anisotropy was computed based on diffusion tensor imaging data for the right and left hippocampus for both groups. No group differences were found in hippocampal fractional anisotropy, EEG spectral power and topography. However a significant correlation was found between more anterior alpha activity and lower fractional anisotropy of both hippocampi in schizophrenics, but not in controls. More anterior alpha activity has been described in schizophrenia. We conclude that this feature might depict a group of schizophrenic patients with reduced hippocampal connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY: Multimodal imaging was performed in Rasmussen Encephalitis (RE) during episodes of complex-partial and focal motor status epilepticus including independent component analysis of BOLD-fMRI, arterial spin labeling perfusion imaging and diffusion tensor imaging. The active epileptic network and topographically independent brain areas showed regional hyperperfusion and progressive atrophy. The results suggest that hyperperfusion outside of the epileptic network represent active inflammation in RE and the imaging protocol presented here, allows assessing thereby the disease activity non-invasively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The origin of auditory hallucinations, which are one of the core symptoms of schizophrenia, is still a matter of debate. It has been hypothesized that alterations in connectivity between frontal and parietotemporal speech-related areas might contribute to the pathogenesis of auditory hallucinations. These networks are assumed to become dysfunctional during the generation and monitoring of inner speech. Magnetic resonance diffusion tensor imaging is a relatively new in vivo method to investigate the directionality of cortical white matter tracts. OBJECTIVE: To investigate, using diffusion tensor imaging, whether previously described abnormal activation patterns observed during auditory hallucinations relate to changes in structural interconnections between the frontal and parietotemporal speech-related areas. METHODS: A 1.5 T magnetic resonance scanner was used to acquire twelve 5-mm slices covering the Sylvian fissure. Fractional anisotropy was assessed in 13 patients prone to auditory hallucinations, in 13 patients without auditory hallucinations, and in 13 healthy control subjects. Structural magnetic resonance imaging was conducted in the same session. Based on an analysis of variance, areas with significantly different fractional anisotropy values between groups were selected for a confirmatory region of interest analysis. Additionally, descriptive voxel-based t tests between the groups were computed. RESULTS: In patients with hallucinations, we found significantly higher white matter directionality in the lateral parts of the temporoparietal section of the arcuate fasciculus and in parts of the anterior corpus callosum compared with control subjects and patients without hallucinations. Comparing patients with hallucinations with patients without hallucinations, we found significant differences most pronounced in the left hemispheric fiber tracts, including the cingulate bundle. CONCLUSION: Our findings suggest that during inner speech, the alterations of white matter fiber tracts in patients with frequent hallucinations lead to abnormal coactivation in regions related to the acoustical processing of external stimuli. This abnormal activation may account for the patients' inability to distinguish self-generated thoughts from external stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT The authors developed a new mapping technique to overcome the temporal and spatial limitations of classic subcortical mapping of the corticospinal tract (CST). The feasibility and safety of continuous (0.4-2 Hz) and dynamic (at the site of and synchronized with tissue resection) subcortical motor mapping was evaluated. METHODS The authors prospectively studied 69 patients who underwent tumor surgery adjacent to the CST (< 1 cm using diffusion tensor imaging and fiber tracking) with simultaneous subcortical monopolar motor mapping (short train, interstimulus interval 4 msec, pulse duration 500 μsec) and a new acoustic motor evoked potential alarm. Continuous (temporal coverage) and dynamic (spatial coverage) mapping was technically realized by integrating the mapping probe at the tip of a new suction device, with the concept that this device will be in contact with the tissue where the resection is performed. Motor function was assessed 1 day after surgery, at discharge, and at 3 months. RESULTS All procedures were technically successful. There was a 1:1 correlation of motor thresholds for stimulation sites simultaneously mapped with the new suction mapping device and the classic fingerstick probe (24 patients, 74 stimulation points; r(2) = 0.98, p < 0.001). The lowest individual motor thresholds were as follows: > 20 mA, 7 patients; 11-20 mA, 13 patients; 6-10 mA, 8 patients; 4-5 mA, 17 patients; and 1-3 mA, 24 patients. At 3 months, 2 patients (3%) had a persistent postoperative motor deficit, both of which were caused by a vascular injury. No patient had a permanent motor deficit caused by a mechanical injury of the CST. CONCLUSIONS Continuous dynamic mapping was found to be a feasible and ergonomic technique for localizing the exact site of the CST and distance to the motor fibers. The acoustic feedback and the ability to stimulate the tissue continuously and exactly at the site of tissue removal improves the accuracy of mapping, especially at low (< 5 mA) stimulation intensities. This new technique may increase the safety of motor eloquent tumor surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiology needs to be extensively explored. For this purpose, CBF and its relation to anisotropic diffusion was analyzed across subjects on a voxel-wise basis with tract-based spatial statistics (TBSS) and also across white matter tracts within subjects. METHODS Diffusion tensor imaging and ASL were acquired in 43 healthy subjects (mean age = 26.3 years). RESULTS CBF in WM was observed to correlate positively with fractional anisotropy across subjects in parts of the splenium of corpus callosum, the right posterior thalamic radiation (including the optic radiation), the forceps major, the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus and the right superior longitudinal fasciculus. Furthermore, radial diffusivity correlated negatively with CBF across subjects in similar regions. Moreover, CBF and FA correlated positively across white matter tracts within subjects. CONCLUSION The currently observed findings on a macroscopic level might reflect the metabolic demand of white matter on a microscopic level involving myelination processes or axonal function. However, the exact underlying physiological mechanism of this relationship needs further evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine the potential benefit of combined respiratory-cardiac triggering for diffusion-weighted imaging (DWI) of kidneys compared to respiratory triggering alone (RT).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate diffusion-weighted magnetic resonance (MR) imaging of the human placenta in fetuses with and fetuses without intrauterine growth restriction (IUGR) who were suspected of having placental insufficiency. MATERIALS AND METHODS: The study was approved by the local ethics committee, and written informed consent was obtained. The authors retrospectively evaluated 1.5-T fetal MR images from 102 singleton pregnancies (mean gestation ± standard deviation, 29 weeks ± 5; range, 21-41 weeks). Morphologic and diffusion-weighted MR imaging were performed. A region of interest analysis of the apparent diffusion coefficient (ADC) of the placenta was independently performed by two observers who were blinded to clinical data and outcome. Placental insufficiency was diagnosed if flattening of the growth curve was detected at obstetric ultrasonography (US), if the birth weight was in the 10th percentile or less, or if fetal weight estimated with US was below the 10th percentile. Abnormal findings at Doppler US of the umbilical artery and histopathologic examination of specimens from the placenta were recorded. The ADCs in fetuses with placental insufficiency were compared with those in fetuses of the same gestational age without placental insufficiency and tested for normal distribution. The t tests and Pearson correlation coefficients were used to compare these results at 5% levels of significance. RESULTS: Thirty-three of the 102 pregnancies were ultimately categorized as having an insufficient placenta. MR imaging depicted morphologic changes (eg, infarction or bleeding) in 27 fetuses. Placental dysfunction was suspected in 33 fetuses at diffusion-weighted imaging (mean ADC, 146.4 sec/mm(2) ± 10.63 for fetuses with placental insufficiency vs 177.1 sec/mm(2) ± 18.90 for fetuses without placental insufficiency; P < .01, with one false-positive case). The use of diffusion-weighted imaging in addition to US increased sensitivity for the detection of placental insufficiency from 73% to 100%, increased accuracy from 91% to 99%, and preserved specificity at 99%. CONCLUSION: Placental dysfunction associated with growth restriction is associated with restricted diffusion and reduced ADC. A decreased ADC used as an early marker of placental damage might be indicative of pregnancy complications such as IUGR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To prospectively determine the 3-year stability and potential changes of functional parameters in renal allograft recipients obtained from diffusion-weighted imaging (DWI) and blood oxygenation level-dependent (BOLD) MRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel magnetic resonance imaging sequences have and still continue to play an increasing role in neuroimaging and neuroscience. Among these techniques, diffusion-weighted imaging (DWI) has revolutionized the diagnosis and management of diseases such as stroke, neoplastic disease and inflammation. However, the effects of aging on diffusion are yet to be determined. To establish reference values for future experimental mouse studies we tested the hypothesis that absolute apparent diffusion coefficients (ADC) of the normal brain change with age. A total of 41 healthy mice were examined by T2-weighted imaging and DWI. For each animal ADC frequency histograms (i) of the whole brain were calculated on a voxel-by-voxel basis and region-of-interest (ROI) measurements (ii) performed and related to the animals' age. The mean entire brain ADC of mice <3 months was 0.715(+/-0.016) x 10(-3) mm2/s, no significant difference to mice aged 4 to 5 months (0.736(+/-0.040) x 10(-3) mm2/s) or animals older than 9 months 0.736(+/-0.020) x 10(-3) mm2/s. Mean whole brain ADCs showed a trend towards lower values with aging but both methods (i + ii) did not reveal a significant correlation with age. ROI measurements in predefined areas: 0.723(+/-0.057) x 10(-3) mm2/s in the parietal lobe, 0.659(+/-0.037) x 10(-3) mm2/s in the striatum and 0.679(+/-0.056) x 10(-3) mm2/s in the temporal lobe. With advancing age, we observed minimal diffusion changes in the whole mouse brain as well as in three ROIs by determination of ADCs. According to our data ADCs remain nearly constant during the aging process of the brain with a small but statistically non-significant trend towards a decreased diffusion in older animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To demonstrate the feasibility of time-reversed fast imaging with steady-state precession (FISP) called PSIF for diffusion-weighted imaging of cartilage and cartilage transplants in a clinical study. MATERIAL AND METHODS: In a cross-sectional study 15 patients underwent MRI using a 3D partially balanced steady-state gradient echo pulse sequence with and without diffusion weighting at two different time points after matrix-associated autologous cartilage transplantation (MACT). Mean diffusion quotients (signal intensity without diffusion-weighting divided by signal intensity with diffusion weighting) within the cartilage transplants were compared to diffusion quotients found in normal cartilage. RESULTS: The global diffusion quotient found in repair cartilage was significantly higher than diffusion values in normal cartilage (p<0.05). There was a decrease between the earlier and the later time point after surgery. CONCLUSIONS: In-vivo diffusion-weighted imaging based on the PSIF technique is possible. Our preliminary results show follow-up of cartilage transplant maturation in patients may provide additional information to morphological assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To compare dynamic contrast material-enhanced magnetic resonance (MR) imaging and diffusion-weighted MR imaging for noninvasive evaluation of early and late effects of a vascular targeting agent in a rat tumor model. MATERIALS AND METHODS: The study protocol was approved by the local ethics committee for animal care and use. Thirteen rats with one rhabdomyosarcoma in each flank (26 tumors) underwent dynamic contrast-enhanced imaging and diffusion-weighted echo-planar imaging in a 1.5-T MR unit before intraperitoneal injection of combretastatin A4 phosphate and at early (1 and 6 hours) and later (2 and 9 days) follow-up examinations after the injection. Histopathologic examination was performed at each time point. The apparent diffusion coefficient (ADC) of each tumor was calculated separately on the basis of diffusion-weighted images obtained with low b gradient values (ADC(low); b = 0, 50, and 100 sec/mm(2)) and high b gradient values (ADC(high); b = 500, 750, and 1000 sec/mm(2)). The difference between ADC(low) and ADC(high) was used as a surrogate measure of tissue perfusion (ADC(low) - ADC(high) = ADC(perf)). From the dynamic contrast-enhanced MR images, the volume transfer constant k and the initial slope of the contrast enhancement-time curve were calculated. For statistical analyses, a paired two-tailed Student t test and linear regression analysis were used. RESULTS: Early after administration of combretastatin, all perfusion-related parameters (k, initial slope, and ADC(perf)) decreased significantly (P < .001); at 9 days after combretastatin administration, they increased significantly (P < .001). Changes in ADC(perf) were correlated with changes in k (R(2) = 0.46, P < .001) and the initial slope (R(2) = 0.67, P < .001). CONCLUSION: Both dynamic contrast-enhanced MR imaging and diffusion-weighted MR imaging allow monitoring of perfusion changes induced by vascular targeting agents in tumors. Diffusion-weighted imaging provides additional information about intratumoral cell viability versus necrosis after administration of combretastatin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endovascular treatments such as transluminal balloon angioplasty and intra-arterial nimodipine represent rescue therapy for cerebral vasospasm (CVS) after aneurysmal subarachnoid haemorrhage (SAH). Both indication and data regarding its efficacy in the prevention of cerebral infarct are, however, inconsistent. Therefore, an MR based perfusion weighted imaging/diffusion weighted imaging (PWI/DWI) mismatch was used to indicate this treatment and to characterise its effectiveness.