106 resultados para Detectors químics
Resumo:
Calcium is a second messenger, which can trigger the modification of synaptic efficacy. We investigated the question of whether a differential rise in postsynaptic Ca2+ ([Ca2+]i) alone is sufficient to account for the induction of long-term potentiation (LTP) and long-term depression (LTD) of EPSPs in the basal dendrites of layer 2/3 pyramidal neurons of the somatosensory cortex. Volume-averaged [Ca2+]i transients were measured in spines of the basal dendritic arbor for spike-timing-dependent plasticity induction protocols. The rise in [Ca2+]i was uncorrelated to the direction of the change in synaptic efficacy, because several pairing protocols evoked similar spine [Ca2+]i transients but resulted in either LTP or LTD. The sequence dependence of near-coincident presynaptic and postsynaptic activity on the direction of changes in synaptic strength suggested that LTP and LTD were induced by two processes, which were controlled separately by postsynaptic [Ca2+]i levels. Activation of voltage-dependent Ca2+ channels before metabotropic glutamate receptors (mGluRs) resulted in the phospholipase C-dependent (PLC-dependent) synthesis of endocannabinoids, which acted as a retrograde messenger to induce LTD. LTP required a large [Ca2+]i transient evoked by NMDA receptor activation. Blocking mGluRs abolished the induction of LTD and uncovered the Ca2+-dependent induction of LTP. We conclude that the volume-averaged peak elevation of [Ca2+]i in spines of layer 2/3 pyramids determines the magnitude of long-term changes in synaptic efficacy. The direction of the change is controlled, however, via a mGluR-coupled signaling cascade. mGluRs act in conjunction with PLC as sequence-sensitive coincidence detectors when postsynaptic precede presynaptic action potentials to induce LTD. Thus presumably two different Ca2+ sensors in spines control the induction of spike-timing-dependent synaptic plasticity.
Resumo:
Bidirectional ITP in fused-silica capillaries double-coated with Polybrene and poly-(vinylsulfonate) is a robust approach for analysis of low-molecular-mass compounds. EOF towards the cathode is strong (mobility >4.0 x 10(-8) m(2)/Vs) within the entire pH range investigated (2.40-8.08), dependent on ionic strength and buffer used and, at constant ionic strength, higher at alkaline pH. Electrokinetic separations and transport in such coated capillaries can be described with a dynamic computer model which permits the combined simulation of electrophoresis and electroosmosis in which the EOF is predicted either with a constant (i.e. pH- and ionic strength-independent) or a pH- and ionic strength-dependent electroosmotic mobility. Detector profiles predicted by computer simulation agree qualitatively well with bidirectional isotachopherograms that are monitored with a setup comprising two axial contactless conductivity detectors and a UV absorbance detector. The varying EOF predicted with a pH- and ionic strength-dependent electroosmotic mobility can be regarded as being realistic.
Resumo:
The primary visual cortex (V1) is pre-wired to facilitate the extraction of behaviorally important visual features. Collinear edge detectors in V1, for instance, mutually enhance each other to improve the perception of lines against a noisy background. The same pre-wiring that facilitates line extraction, however, is detrimental when subjects have to discriminate the brightness of different line segments. How is it possible to improve in one task by unsupervised practicing, without getting worse in the other task? The classical view of perceptual learning is that practicing modulates the feedforward input stream through synaptic modifications onto or within V1. However, any rewiring of V1 would deteriorate other perceptual abilities different from the trained one. We propose a general neuronal model showing that perceptual learning can modulate top-down input to V1 in a task-specific way while feedforward and lateral pathways remain intact. Consistent with biological data, the model explains how context-dependent brightness discrimination is improved by a top-down recruitment of recurrent inhibition and a top-down induced increase of the neuronal gain within V1. Both the top-down modulation of inhibition and of neuronal gain are suggested to be universal features of cortical microcircuits which enable perceptual learning.
Resumo:
The GLAaS algorithm for pretreatment intensity modulation radiation therapy absolute dose verification based on the use of amorphous silicon detectors, as described in Nicolini et al. [G. Nicolini, A. Fogliata, E. Vanetti, A. Clivio, and L. Cozzi, Med. Phys. 33, 2839-2851 (2006)], was tested under a variety of experimental conditions to investigate its robustness, the possibility of using it in different clinics and its performance. GLAaS was therefore tested on a low-energy Varian Clinac (6 MV) equipped with an amorphous silicon Portal Vision PV-aS500 with electronic readout IAS2 and on a high-energy Clinac (6 and 15 MV) equipped with a PV-aS1000 and IAS3 electronics. Tests were performed for three calibration conditions: A: adding buildup on the top of the cassette such that SDD-SSD = d(max) and comparing measurements with corresponding doses computed at d(max), B: without adding any buildup on the top of the cassette and considering only the intrinsic water-equivalent thickness of the electronic portal imaging devices device (0.8 cm), and C: without adding any buildup on the top of the cassette but comparing measurements against doses computed at d(max). This procedure is similar to that usually applied when in vivo dosimetry is performed with solid state diodes without sufficient buildup material. Quantitatively, the gamma index (gamma), as described by Low et al. [D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656-660 (1998)], was assessed. The gamma index was computed for a distance to agreement (DTA) of 3 mm. The dose difference deltaD was considered as 2%, 3%, and 4%. As a measure of the quality of results, the fraction of field area with gamma larger than 1 (%FA) was scored. Results over a set of 50 test samples (including fields from head and neck, breast, prostate, anal canal, and brain cases) and from the long-term routine usage, demonstrated the robustness and stability of GLAaS. In general, the mean values of %FA remain below 3% for deltaD equal or larger than 3%, while they are slightly larger for deltaD = 2% with %FA in the range from 3% to 8%. Since its introduction in routine practice, 1453 fields have been verified with GLAaS at the authors' institute (6 MV beam). Using a DTA of 3 mm and a deltaD of 4% the authors obtained %FA = 0.9 +/- 1.1 for the entire data set while, stratifying according to the dose calculation algorithm, they observed: %FA = 0.7 +/- 0.9 for fields computed with the analytical anisotropic algorithm and %FA = 2.4 +/- 1.3 for pencil-beam based fields with a statistically significant difference between the two groups. If data are stratified according to field splitting, they observed %FA = 0.8 +/- 1.0 for split fields and 1.0 +/- 1.2 for nonsplit fields without any significant difference.
Resumo:
Cationic and anionic electrophoretic mobilization for focusing of hemoglobins (Hb's) in the presence of 100 carrier ampholytes covering a pI range of 6.00-7.98 was studied by computer simulation at a constant current density of 300 A/m(2). Electropherograms that would be produced by whole column imaging and by single detectors placed at different locations along the focusing column are presented. Upon mobilization, peak heights of the Hb zones decrease, but the zones retain a relatively sharp constant profile and are migrating at a constant velocity. A further peak decrease occurs during readjustment at the locations of the original buffer/column interfaces, indicating that detection sensitivity is the lowest at these locations. An anionic carrier ampholyte mobility smaller than that of its cationic species produces a cathodic drift which is smaller than the transport rate used for electrophoretic mobilization. Compared to the case with equal mobilities of carrier ampholyte species, a small increase (decrease) is predicted for the cationic (anionic) mobilization rate within the focusing column. Simulation data suggest that electrophoretic mobilization after focusing and focusing with concurrent electrophoretic mobilization are comparable isotachophoretic processes that occur when there is an uninterrupted flux of an ion through the focusing column. Cathodic drift caused by unequal mobilities of the species of carrier ampholytes, electrophoretic mobilization, and decomposition occurring at the pH gradient edges are related electrophoretic processes.
Resumo:
The Plasma and Supra-Thermal Ion Composition (PLASTIC) instrument is one of four experiment packages on board of the two identical STEREO spacecraft A and B, which were successfully launched from Cape Canaveral on 26 October 2006. During the two years of the nominal STEREO mission, PLASTIC is providing us with the plasma characteristics of protons, alpha particles, and heavy ions. PLASTIC will also provide key diagnostic measurements in the form of the mass and charge state composition of heavy ions. Three measurements (E/qk, time of flight, ESSD) from the pulse height raw data are used to characterize the solar wind ions from the solar wind sector, and part of the suprathermal particles from the wide-angle partition with respect to mass, atomic number and charge state. In this paper, we present a new method for flight data analysis based on simulations of the PLASTIC response to solar wind ions. We present the response of the entrance system / energy analyzer in an analytical form. Based on stopping power theory, we use an analytical expression for the energy loss of the ions when they pass through a thin carbon foil. This allows us to model analytically the response of the time of flight mass spectrometer to solar wind ions. Thus we present a new version of the analytical response of the solid state detectors to solar wind ions. Various important parameters needed for our models were derived, based on calibration data and on the first flight measurements obtained from STEREO-A. We used information from each measured event that is registered in full resolution in the Pulse Height Analysis words and we derived a new algorithm for the analysis of both existing and future data sets of a similar nature which was tested and works well. This algorithm allows us to obtain, for each measured event, the mass, atomic number and charge state in the correct physical units. Finally, an important criterion was developed for filtering our Fe raw flight data set from the pulse height data without discriminating charge states.