85 resultados para Descolamento da Retina
Resumo:
G protein-coupled receptors (GPCRs) are seven transmembrane domain proteins that transduce extracellular signals across the plasma membrane and couple to the heterotrimeric family of G proteins. Like most intrinsic membrane proteins, GPCRs are capable of oligomerization, the function of which has only been established for a few different receptor systems. One challenge in understanding the function of oligomers relates to the inability to separate monomeric and oligomeric receptor complexes in membrane environments. Here we report the reconstitution of bovine rhodopsin, a GPCR expressed in the retina, into an apolipoprotein A-I phospholipid particle, derived from high density lipoprotein (HDL). We demonstrate that rhodopsin, when incorporated into these 10 nm reconstituted HDL (rHDL) particles, is monomeric and functional. Rhodopsin.rHDL maintains the appropriate spectral properties with respect to photoactivation and formation of the active form, metarhodopsin II. Additionally, the kinetics of metarhodopsin II decay is similar between rhodopsin in native membranes and rhodopsin in rHDL particles. Photoactivation of monomeric rhodopsin.rHDL also results in the rapid activation of transducin, at a rate that is comparable with that found in native rod outer segments and 20-fold faster than rhodopsin in detergent micelles. These data suggest that monomeric rhodopsin is the minimal functional unit in G protein activation and that oligomerization is not absolutely required for this process.
Resumo:
BACKGROUND: Exudative age-related macular degeneration (AMD) is a sight-threatening event in many elderly people. Some patients have a much better outcome in visual acuity (VA) than others after treatment with photodynamic therapy (PDT) with verteporfin. The combination of fluorescein angiography (FA) and indocyanine green (ICG) angiography using the Heidelberg Retina Angiograph II (HRA 2) should make a delineation of distinct pattern(s) possible in order to better select and assess therapy. METHODS: This is a retrospective, case-control, single-centre study. We identified a total of 168 eyes of 168 patients from July 2003 to June 2006, including 30 eyes of 30 patients with better visual outcome, defined in this study as VA < or = 0.48 logMAR (> or =20/60 Snellen chart) at the end of the study. Best-corrected VA, maximal central retinal thickness as measured by optical coherence tomography, and results of the FA/ICG angiography using the HRA 2 were analyzed. In this article, we discuss patients with polypoidal choroidal vasculopathy (PCV) and their characteristics. RESULTS: The average follow-up time was 15.3 months (range 4-28 months). Seventeen (57%) of the 30 patients with better visual outcome had PCV. All patients in the group with better visual outcome needed fewer PDT treatments compared with our control group of patients with an exudative AMD. INTERPRETATION: Simultaneous FA/ICG angiography using the HRA 2 allowed delineation of a subgroup of patients with PCV who showed a better visual outcome compared with those with other types of exudative AMD, after treatment with PDT.
Resumo:
PURPOSE: To correlate damage to the retinal pigment epithelium (RPE) with decreased visual function after the systemic administration of sodium iodate (NaIO(3)). METHODS: Damage was produced in mice by injection of 15, 25, or 35 mg/kg NaIO(3). Visual function was assessed with the cued water maze (WM) behavioral test and the optokinetic reflex (OKR) measurement at different times after injection. Autofluorescence in whole eye flatmounts was quantified, and hematoxylin and eosin staining of paraffin sections was performed to assess changes in the outer retina. RESULTS: After 15 mg/kg NaIO(3), cued WM test results were normal, whereas OKR measurements were significantly decreased at all times. Focal RPE loss began on day 21, but no significant damage to the outer nuclear layer was observed. After 25 mg/kg NaIO(3), the cued WM test was transitionally reduced and the OKR measurement again decreased at all times. Large areas of RPE loss occurred on day 14 with a reduced outer nuclear layer on the same day. With 35 mg/kg NaIO(3), the cued WM test was reduced beginning on day 14 with complete obliteration of the OKR beginning on day 3, large areas of RPE loss on the same day, and a reduced outer nuclear layer on day 7. CONCLUSIONS: Stable, patchy RPE loss was observed with a low concentration of NaIO(3). The OKR measurement showed changes in visual function earlier than the cued WM test and before histologic findings were observed.
Resumo:
Little is known about the ocular and cerebral blood flow during exposure to increasingly hypoxic conditions at high altitudes. There is evidence that an increase in cerebral blood flow resulting from altered autoregulation constitutes a risk factor for acute mountain sickness (AMS) and high-altitude cerebral edema (HACE) by leading to capillary overperfusion and vasogenic cerebral edema. The retina represents the only part of the central nervous system where capillary blood flow is visible and can be measured by noninvasive means. In this study we aimed to gain insights into retinal and choroidal autoregulatory properties during hypoxia and to correlate circulatory changes to symptoms of AMS and clinical signs of HACE. This observational study was performed within the scope of a high-altitude medical research expedition to Mount Muztagh Ata (7,546 m). Twenty seven participants underwent general and ophthalmic examinations up to a maximal height of 6,800 m. Examinations included fundus photography and measurements of retinal and choroidal blood flow, as well as measurement of arterial oxygen saturation and hematocrit. The initial increase in retinal blood velocity was followed by a decrease despite further ascent, whereas choroidal flow increase occurred later, at even higher altitudes. The sum of all adaptational mechanisms resulted in a stable oxygen delivery to the retina and the choroid. Parameters reflecting the retinal circulation and optic disc swelling correlated well with the occurrence of AMS-related symptoms. We demonstrate that sojourns at high altitudes trigger distinct behavior of retinal and choroidal blood flow. Increase in retinal but not in choroidal blood flow correlated with the occurrence of AMS-related symptoms.
Resumo:
To evaluate whether complement Factor P (properdin) was present in surgically removed choroidal neovascular membranes of patients with age-related macular degeneration (AMD) and to investigate whether associated pre- and postoperative clinical characteristics can be correlated.
Resumo:
BACKGROUND: Heavier than water tamponades offer the possibility to support the inferior part of the fundus after retinal detachment. The aim of this study was to evaluate the anatomic and functional outcome of complicated retinal detachment treated with vitreous surgery and heavy silicone oil (HSO) tamponade. Surgery was performed in eyes with rhegmatogenous retinal detachment (RD) predominantly in the lower hemisphere or with penetrating injury (either as primary intervention or after development of proliferative vitreoretinopathy [PVR]). MATERIALS AND METHODS: Sixty-one eyes of 61 patients with RD - mostly complicated by PVR - and a minimum follow-up of 12 months were included in this study. Vitreoretinal surgery with HSO (Oxane HD) tamponade was performed in all patients. In 52 patients, heavy silicone oil was used in the management of complicated RD. 9 patients had surgery for complicated RD after penetrating eye injury.The mean follow-up period was 30.3 +/- 10.2 months. RESULTS: The overall final anatomic success rate was 79 %. In 39 % of the cases the retina remained attached during the entire follow-up period. CONCLUSIONS: The anatomic success rate after surgery with HSO (Oxane HD) was relatively low; however, only complex cases bearing a higher risk of retinal re-detachment received HSO in this study. Oxane HD does not appear to have major advantages compared to conventional silicone oil or other new-generation heavy silicone oils in these cases.
Resumo:
PURPOSE: To compare tunnelled scleral intravitreal injection with straight scleral intravitreal injection concerning short-term intraocular pressure (IOP) changes, occurrence and amount of vitreous reflux, and patient discomfort. METHODS: Sixty patients were randomly allocated to two groups (tunnelled intravitreal injection and straight intravitreal injection). IOP was measured before and directly (<1 minute) after the injection of 0.05 mL of an antivascular endothelial growth factor agent and then every 5 minutes until IOP was <30 mmHg. Occurrence and amount of vitreous reflux were recorded. Patient discomfort during injection was assessed with a Wong-Baker faces pain rating scale. RESULTS: IOP (mmHg +/- SD) increased significantly directly after injection to 35.97 +/- 8.13 (tunnelled intravitreal injection) and 30.19 +/- 12.14 (straight intravitreal injection). These pressure spikes differed significantly between both groups (P = 0.01, mean difference: -7.11). Five minutes after injection, there was no significant difference in IOP increase between the groups. All IOP measurements were <30 mmHg after 15 minutes. Occurrence and amount of vitreous reflux were significantly higher with straight intravitreal injection. There was no significant difference in Wong-Baker faces pain rating scale score between both groups. CONCLUSION: Tunnelled intravitreal injection seems to be the technique of choice for low-volume intravitreal injection (0.05 mL). There is neither a difference in patient discomfort nor a difference in IOP increase 5 minutes after injection between both groups. Significantly less vitreous reflux with tunnelled intravitreal injection should lead to less postinjectional drug loss.
Resumo:
BACKGROUND: The aim of this study is to determine the serum immunoglobulin (Ig) M and serum viscosity (SV) levels at which retinal changes associated with hyperviscosity syndrome (HVS) as a result of Waldenström's macroglobulinemia (WM) occur. In addition, the effect of plasmapheresis on HVS-related retinopathy was tested. PATIENTS AND METHODS: A total of 46 patients with WM received indirect ophthalmoscopy, laser Doppler retinal blood flow measurements, serum IgM, and SV determinations. A total of 9 patients with HVS were studied before and after plasmapheresis. RESULTS: Mean IgM and SV levels of patients with the earliest retinal changes were 5442 mg/dL and 3.1 cp, respectively. Plasmapheresis improved retinopathy, decreased serum IgM (46.5 +/- 18%; P = .0009), SV (44.7 +/- 17.3%; P = .002), retinal venous diameter (15.3 +/- 5.8%; P = .0001), and increased venous blood speed by +55.2 +/- 22.5% (P = .0004). CONCLUSION: Examination of the retina is useful in identifying the symptomatic threshold of plasma viscosity levels in patients with HVS and can be used to gauge the effectiveness of plasmapheresis treatment.
Resumo:
This study compares basal and induced expression of cytochrome P4501A-CYP1A in the brain of gilthead seabream, Sparus aurata. Larval or adult seabream were exposed to benzo(a)pyrene -B(a)P- and the CYP1A response was assessed by analyzing CYP1A mRNA (RT-PCR), CYP1A protein (expression levels: ELISA, western blotting; cellular localization: immunohistochemistry), and CYP1A catalytic activity (7-ethoxyresorufin-O-deethylase-EROD). In the brain of adult S. aurata, CYP1A immunostaining was generally detected in the vasculature. It was present in the neuronal fibers and glial cells of the olfactory bulbs and the ventral telencephalon. ELISA and RT-PCR analyses confirmed CYP1A expression in the brains of non-exposed seabream. B(a)P exposure led to increased CYP1A staining mainly in neuronal fibers and glial cells of the olfactory bulbs, but also in the vascular endothelia. EROD activity, however, could not be detected in the brain of adult seabream, neither in control nor in exposed fish. In the developing brain of S. aurata larvae, immunohistochemical staining detected CYP1A protein exclusively in endothelia of the olfactory placode and in retina. Staining intensity of CYP1A slightly increases with larval development, especially in vascular brain endothelia. Exposing the larvae to 0.3 or 0.5 microg B(a)P/L from hatching until 15 days post hatching (dph) did not result in enhanced CYP1A immunostaining in the brain. In samples of whole seabream larvae, both from controls and BaP treatments, neither CYP1A mRNA, protein nor catalytic activity were detectable. The results demonstrate that CYP1A is expressed already and inducible in the larval brain, but that the regional and cellular expression differs partly between larval and adult brain. This may have implications for the toxicity of CYP1A-inducing xenobiotics on early and mature life stages of seabream.
Resumo:
The multi-BCL-2 homology domain pro-apoptotic BCL-2 family members BAK and BAX have critical roles in apoptosis. They are essential for mitochondrial outer-membrane permeabilization, leading to the release of apoptogenic factors such as cytochrome-c, which promote activation of the caspase cascade and cellular demolition. The BOK protein has extensive amino-acid sequence similarity to BAK and BAX and is expressed in diverse cell types, particularly those of the female reproductive tissues. The BOK-deficient mice have no readily discernible abnormalities, and its function therefore remains unresolved. We hypothesized that BOK may exert functions that overlap with those of BAK and/or BAX and examined this by generating Bok−/−Bak−/− and Bok−/−Bax−/− mice. Combined loss of BOK and BAK did not elicit any noticeable defects, although it remains possible that BOK and BAK have critical roles in developmental cell death that overlap with those of BAX. In most tissues examined, loss of BOK did not exacerbate the abnormalities caused by loss of BAX, such as defects in spermatogenesis or the increase in neuronal populations in the brain and retina. Notably, however, old Bok−/−Bax−/− females had abnormally increased numbers of oocytes from different stages of development, indicating that BOK may have a pro-apoptotic function overlapping with that of BAX in age-related follicular atresia.
Resumo:
Regardless of the mechanisms that initiate the increase in blood pressure, functional and structural changes in the systemic vasculature are the final result of long-standing hypertension. These changes can occur in the macro- but also in the microvasculature. The supply of the tissues with oxygen, nutrients, and metabolites occurs almost exclusively in the microcirculation (which comprises resistance arterioles, capillaries and venules), and an adequate perfusion via the microcirculatory network is essential for the integrity of tissue and organ function. This review focuses on results from clinical studies in hypertensive patients, which have been performed in close cooperation with different clinical groups over the last three decades. Intravital microscopy was used to study skin microcirculation, microcatheters for the analysis of skeletal muscle microcirculation, the slit lamp for conjunctival microcirculation and the laser scanning ophthalmoscope for the measurement of the retinal capillary network. The first changes of the normal microcirculation can be found in about 93% of patients with essential hypertension, long before organ dysfunctions become clinically manifest. The earliest disorders were found in skin capillaries and thereafter in the retina and the skeletal muscle. In general, the disorders in the different areas were clearly correlated. While capillary rarefaction occurred mainly in the retina and the conjunctiva bulbi, in skin capillaries morphological changes were rare. A significant decrease of capillary erythrocyte velocities under resting conditions together with a marked damping of the postischemic hyperemia was found, both correlating with the duration of hypertension or WHO stage or the fundus hypertonicus stage. Also the mean oxygen tension in the skeletal muscle was correlated with the state of the disease. These data show that the microcirculatory disorders in hypertension are systemic and are hallmarks of the long-term complications of hypertension. There is now a large body of evidence that microvascular changes occur very early and may be important in their pathogenesis and progression.
Resumo:
Because proliferative vitreoretinopathy cannot be effectively treated, its prevention is indispensable for the success of surgery for retinal detachment. The elaboration of preventive and therapeutic strategies depends upon the identification of patients who are genetically predisposed to develop the disease, as well as upon an understanding of the biological process involved and the role of local factors, such as the status of the uveovascular barrier. Detachment of the retina or vitreous activates glia to release cytokines and ATP, which not only protect the neuroretina but also promote inflammation, retinal ischemia, cell proliferation, and tissue remodeling. The vitreal microenvironment favors cellular de-differentiation and proliferation of cells with nonspecific nutritional requirements. This may render a pharmacological inhibition of their growth difficult without causing damage to the pharmacologically vulnerable neuroretina. Moreover, reattachment of the retina relies upon the local induction of a controlled wound-healing response involving macrophages and proliferating glia. Hence, the functional outcome of proliferative vitreoretinopathy will be determined by the equilibrium established between protective and destructive repair mechanisms, which will be influenced by the location and the degree of damage to the photoreceptor cells that is induced by peri-retinal gliosis.
Resumo:
PURPOSE To report a case of rare posterior eye manifestation of Crohn's disease preceding recurrence of inflammatory bowel disease. METHODS Case report with ophthalmoscopic findings, fluorescein/indocyanin green angiograms, automated perimetry and multifocal-ERG. RESULTS The perimetry revealed absolute and relative scotomas corresponding to multifocal inflammatory lesions in the retina and choroid, reduced a/b amplitudes in multifocal-ERG and hypofluorescent dots in angiography. Under oral prednisolone visual defects, ophthalmoscopic and angiographic findings resolved, while a/b amplitudes remained mildly reduced. The ocular changes occurred without systemic hypertension and were followed by a new episode of intestinal symptoms. CONCLUSION Multifocal inflammatory lesions in the retina and choroid in patients with Crohn's disease may occur and may precede a recurrent intestinal episode. Crohn's patients should be carefully followed up in collaboration with internal medicine specialists.
Resumo:
We discuss here principal biochemical transformations of retinoid molecules in the visual cycle. We focus our analysis on the accumulating evidence of alternate pathways and functional redundancies in the cycle. The efficiency of the visual cycle depends, on one hand, on fast regeneration of the photo-bleached chromophores. On the other hand, it is crucial that the cyclic process should be highly selective to avoid accumulation of byproducts. The state-of-the-art knowledge indicates that single enzymatically active components of the cycle are not strictly selective and may require chaperones to enhance their rates. It appears that protein–protein interactions significantly improve the biological stability of the visual cycle. In particular, synthesis of thermodynamically less stable 11-cis-retinoid conformers is favored by physical interactions of the isomerases present in the retina with cellular retinaldehyde binding protein
Resumo:
PURPOSE To investigate retrograde axonal degeneration for its potential to cause microcystic macular edema (MME), a maculopathy that has been previously described in patients with demyelinating disease. To identify risk factors for MME and to expand the anatomic knowledge on MME. DESIGN Retrospective case series. PARTICIPANTS We included 117 consecutive patients and 180 eyes with confirmed optic neuropathy of variable etiology. Patients with glaucoma were excluded. METHODS We determined age, sex, visual acuity, etiology of optic neuropathy, and the temporal and spatial characteristics of MME. Eyes with MME were compared with eyes with optic neuropathy alone and to healthy fellow eyes. With retinal layer segmentation we quantitatively measured the intraretinal anatomy. MAIN OUTCOME MEASURES Demographic data, distribution of MME in the retina, and thickness of retinal layers were analyzed. RESULTS We found MME in 16 eyes (8.8%) from 9 patients, none of whom had multiple sclerosis or neuromyelitis optica. The MME was restricted to the inner nuclear layer (INL) and had a characteristic perifoveal circular distribution. Compared with healthy controls, MME was associated with significant thinning of the ganglion cell layer and nerve fiber layer, as well as a thickening of the INL and the deeper retinal layers. Youth is a significant risk factor for MME. CONCLUSIONS Microcystic macular edema is not specific for demyelinating disease. It is a sign of optic neuropathy irrespective of its etiology. The distinctive intraretinal anatomy suggests that MME is caused by retrograde degeneration of the inner retinal layers, resulting in impaired fluid resorption in the macula.