50 resultados para Delay in payment


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Cortical gray matter thinning occurs during childhood due to pruning of inefficient synaptic connections and an increase in myelination. Preterms show alterations in brain structure, with prolonged maturation of the frontal lobes, smaller cortical volumes and reduced white matter volume. These findings give rise to the question if there is a differential influence of age on cortical thinning in preterms compared to controls. AIMS: To investigate the relationship between age and cortical thinning in school-aged preterms compared to controls. STUDY DESIGN AND OUTCOME MEASURES: The automated surface reconstruction software FreeSurfer was applied to obtain measurements of cortical thickness based on T1-weighted MRI images. SUBJECTS: Forty-one preterms (<32weeks gestational age and/or <1500g birth weight) and 30 controls were included in the study (7-12years). RESULTS: In preterms, age correlated negatively with cortical thickness in right frontal, parietal and inferior temporal regions. Furthermore, young preterms showed a thicker cortex compared to old preterms in bilateral frontal, parietal and temporal regions. In controls, age was not associated with cortical thickness. CONCLUSION: In preterms, cortical thinning still seems to occur between the age of 7 and 12years, mainly in frontal and parietal areas whereas in controls, a substantial part of cortical thinning appears to be completed before they reach the age of 7years. These data indicate slower cortical thinning in preterms than in controls.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Low-grade gliomas (LGGs) are a group of primary brain tumours usually encountered in young patient populations. These tumours represent a difficult challenge because many patients survive a decade or more and may be at a higher risk for treatment-related complications. Specifically, radiation therapy is known to have a relevant effect on survival but in many cases it can be deferred to avoid side effects while maintaining its beneficial effect. However, a subset of LGGs manifests more aggressive clinical behaviour and requires earlier intervention. Moreover, the effectiveness of radiotherapy depends on the tumour characteristics. Recently Pallud et al. (2012. Neuro-Oncology, 14: , 1-10) studied patients with LGGs treated with radiation therapy as a first-line therapy and obtained the counterintuitive result that tumours with a fast response to the therapy had a worse prognosis than those responding late. In this paper, we construct a mathematical model describing the basic facts of glioma progression and response to radiotherapy. The model provides also an explanation to the observations of Pallud et al. Using the model, we propose radiation fractionation schemes that might be therapeutically useful by helping to evaluate tumour malignancy while at the same time reducing the toxicity associated to the treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Delaying clinical disease onset would greatly reduce neurodegenerative disease burden, but the mechanisms influencing early preclinical progression are poorly understood. Here, we show that in mouse models of familial motoneuron (MN) disease, SOD1 mutants specifically render vulnerable MNs dependent on endogenous neuroprotection signaling involving excitability and mammalian target of rapamycin (mTOR). The most vulnerable low-excitability FF MNs already exhibited evidence of pathology and endogenous neuroprotection recruitment early postnatally. Enhancing MN excitability promoted MN neuroprotection and reversed misfolded SOD1 (misfSOD1) accumulation and MN pathology, whereas reducing MN excitability augmented misfSOD1 accumulation and accelerated disease. Inhibiting metabotropic cholinergic signaling onto MNs reduced ER stress, but enhanced misfSOD1 accumulation and prevented mTOR activation in alpha-MNs. Modulating excitability and/or alpha-MN mTOR activity had comparable effects on the progression rates of motor dysfunction, denervation, and death. Therefore, excitability and mTOR are key endogenous neuroprotection mechanisms in motoneurons to counteract clinically important disease progression in ALS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent findings demonstrate that trees in deserts are efficient carbon sinks. It remains however unknown whether the Clean Development Mechanism will accelerate the planting of trees in Non Annex I dryland countries. We estimated the price of carbon at which a farmer would be indifferent between his customary activity and the planting of trees to trade carbon credits, along an aridity gradient. Carbon yields were simulated by means of the CO2FIX v3.1 model for Pinus halepensis with its respective yield classes along the gradient (Arid – 100mm to Dry Sub Humid conditions – 900mm). Wheat and pasture yields were predicted on somewhat similar nitrogen-based quadratic models, using 30 years of weather data to simulate moisture stress. Stochastic production, input and output prices were afterwards simulated on a Monte Carlo matrix. Results show that, despite the high levels of carbon uptake, carbon trading by afforesting is unprofitable anywhere along the gradient. Indeed, the price of carbon would have to raise unrealistically high, and the certification costs would have to drop significantly, to make the Clean Development Mechanism worthwhile for non annex I dryland countries farmers. From a government agency's point of view the Clean Development Mechanism is attractive. However, such agencies will find it difficult to demonstrate “additionality”, even if the rule may be somewhat flexible. Based on these findings, we will further discuss why the Clean Development Mechanism, a supposedly pro-poor instrument, fails to assist farmers in Non Annex I dryland countries living at minimum subsistence level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND L-serine plays an essential role in neuronal development and function. Although a non-essential amino acid, L-serine must be synthesised within the brain because of its poor permeability by the blood-brain barrier. Within the brain, its synthesis is confined to astrocytes, and its shuttle to neuronal cells is performed by a dedicated neutral amino acid transporter, ASCT1. METHODS AND RESULTS Using exome analysis we identified the recessive mutations, p.E256K, p.L315fs, and p.R457W, in SLC1A4, the gene encoding ASCT1, in patients with developmental delay, microcephaly and hypomyelination; seizure disorder was variably present. When expressed in a heterologous system, the mutations did not affect the protein level at the plasma membrane but abolished or markedly reduced L-serine transport for p.R457W and p.E256K mutations, respectively. Interestingly, p.E256K mutation displayed a lower L-serine and alanine affinity but the same substrate selectivity as wild-type ASCT1. CONCLUSIONS The clinical phenotype of ASCT1 deficiency is reminiscent of defects in L-serine biosynthesis. The data underscore that ASCT1 is essential in brain serine transport. The SLC1A4 p.E256K mutation has a carrier frequency of 0.7% in the Ashkenazi-Jewish population and should be added to the carrier screening panel in this community.