58 resultados para DYNAMIC-ANALYSIS
Quantitative analysis of benign paroxysmal positional vertigo fatigue under canalithiasis conditions
Resumo:
In our daily life, small flows in the semicircular canals (SCCs) of the inner ear displace a sensory structure called the cupula which mediates the transduction of head angular velocities to afferent signals. We consider a dysfunction of the SCCs known as canalithiasis. Under this condition, small debris particles disturb the flow in the SCCs and can cause benign paroxysmal positional vertigo (BPPV), arguably the most common form of vertigo in humans. The diagnosis of BPPV is mainly based on the analysis of typical eye movements (positional nystagmus) following provocative head maneuvers that are known to lead to vertigo in BPPV patients. These eye movements are triggered by the vestibulo-ocular reflex, and their velocity provides an indirect measurement of the cupula displacement. An attenuation of the vertigo and the nystagmus is often observed when the provocative maneuver is repeated. This attenuation is known as BPPV fatigue. It was not quantitatively described so far, and the mechanisms causing it remain unknown. We quantify fatigue by eye velocity measurements and propose a fluid dynamic interpretation of our results based on a computational model for the fluid–particle dynamics of a SCC with canalithiasis. Our model suggests that the particles may not go back to their initial position after a first head maneuver such that a second head maneuver leads to different particle trajectories causing smaller cupula displacements.
Resumo:
A reliable and robust routing service for Flying Ad-Hoc Networks (FANETs) must be able to adapt to topology changes, and also to recover the quality level of the delivered multiple video flows under dynamic network topologies. The user experience on watching live videos must also be satisfactory even in scenarios with network congestion, buffer overflow, and packet loss ratio, as experienced in many FANET multimedia applications. In this paper, we perform a comparative simulation study to assess the robustness, reliability, and quality level of videos transmitted via well-known beaconless opportunistic routing protocols. Simulation results shows that our developed protocol XLinGO achieves multimedia dissemination with Quality of Experience (QoE) support and robustness in a multi-hop, multi-flow, and mobile networks, as required in many multimedia FANET scenarios.
Resumo:
A rain-on-snow flood occurred in the Bernese Alps, Switzerland, on 10 October 2011, and caused significant damage. As the flood peak was unpredicted by the flood forecast system, questions were raised concerning the causes and the predictability of the event. Here, we aimed to reconstruct the anatomy of this rain-on-snow flood in the Lötschen Valley (160 km2) by analyzing meteorological data from the synoptic to the local scale and by reproducing the flood peak with the hydrological model WaSiM-ETH (Water Flow and Balance Simulation Model). This in order to gain process understanding and to evaluate the predictability. The atmospheric drivers of this rain-on-snow flood were (i) sustained snowfall followed by (ii) the passage of an atmospheric river bringing warm and moist air towards the Alps. As a result, intensive rainfall (average of 100 mm day-1) was accompanied by a temperature increase that shifted the 0° line from 1500 to 3200 m a.s.l. (meters above sea level) in 24 h with a maximum increase of 9 K in 9 h. The south-facing slope of the valley received significantly more precipitation than the north-facing slope, leading to flooding only in tributaries along the south-facing slope. We hypothesized that the reason for this very local rainfall distribution was a cavity circulation combined with a seeder-feeder-cloud system enhancing local rainfall and snowmelt along the south-facing slope. By applying and considerably recalibrating the standard hydrological model setup, we proved that both latent and sensible heat fluxes were needed to reconstruct the snow cover dynamic, and that locally high-precipitation sums (160 mm in 12 h) were required to produce the estimated flood peak. However, to reproduce the rapid runoff responses during the event, we conceptually represent likely lateral flow dynamics within the snow cover causing the model to react "oversensitively" to meltwater. Driving the optimized model with COSMO (Consortium for Small-scale Modeling)-2 forecast data, we still failed to simulate the flood because COSMO-2 forecast data underestimated both the local precipitation peak and the temperature increase. Thus we conclude that this rain-on-snow flood was, in general, predictable, but requires a special hydrological model setup and extensive and locally precise meteorological input data. Although, this data quality may not be achieved with forecast data, an additional model with a specific rain-on-snow configuration can provide useful information when rain-on-snow events are likely to occur.
Resumo:
AIM MRI and PET with 18F-fluoro-ethyl-tyrosine (FET) have been increasingly used to evaluate patients with gliomas. Our purpose was to assess the additive value of MR spectroscopy (MRS), diffusion imaging and dynamic FET-PET for glioma grading. PATIENTS, METHODS 38 patients (42 ± 15 aged, F/M: 0.46) with untreated histologically proven brain gliomas were included. All underwent conventional MRI, MRS, diffusion sequences, and FET-PET within 3±4 weeks. Performances of tumour FET time-activity-curve, early-to-middle SUVmax ratio, choline / creatine ratio and ADC histogram distribution pattern for gliomas grading were assessed, as compared to histology. Combination of these parameters and respective odds were also evaluated. RESULTS Tumour time-activity-curve reached the best accuracy (67%) when taken alone to distinguish between low and high-grade gliomas, followed by ADC histogram analysis (65%). Combination of time-activity-curve and ADC histogram analysis improved the sensitivity from 67% to 86% and the specificity from 63-67% to 100% (p < 0.008). On multivariate logistic regression analysis, negative slope of the tumour FET time-activity-curve however remains the best predictor of high-grade glioma (odds 7.6, SE 6.8, p = 0.022). CONCLUSION Combination of dynamic FET-PET and diffusion MRI reached good performance for gliomas grading. The use of FET-PET/MR may be highly relevant in the initial assessment of primary brain tumours.
Resumo:
INTRODUCTION Spinal disc herniation, lumbar spinal stenosis and spondylolisthesis are known to be leading causes of lumbar back pain. The cost of low back pain management and related operations are continuously increasing in the healthcare sector. There are many studies regarding complications after spine surgery but little is known about the factors predicting the length of stay in hospital. The purpose of this study was to identify these factors in lumbar spine surgery in order to adapt the postoperative treatment. MATERIAL AND METHODS The current study was carried out as a post hoc analysis on the basis of the German spine registry. Patients who underwent lumbar spine surgery by posterior surgical access and with posterior fusion and/or rigid stabilization, whereby procedures with dynamic stabilization were excluded. Patient characteristics were tested for association with length of stay (LOS) using bivariate and multivariate analyses. RESULTS A total of 356 patients met the inclusion criteria. The average age of all patients was 64.6 years and the mean LOS was 11.9 ± 6.0 days with a range of 2-44 days. Independent factors that were influencing LOS were increased age at the time of surgery, higher body mass index, male gender, blood transfusion of 1-2 erythrocyte concentrates and the presence of surgical complications. CONCLUSION Identification of predictive factors for prolonged LOS may allow for estimation of patient hospitalization time and for optimization of postoperative care. In individual cases this may result of a reduction in the LOS.
Resumo:
BACKGROUND The aim of this study was to evaluate imaging-based response to standardized neoadjuvant chemotherapy (NACT) regimen by dynamic contrast-enhanced magnetic resonance mammography (DCE-MRM), whereas MR images were analyzed by an automatic computer-assisted diagnosis (CAD) system in comparison to visual evaluation. MRI findings were correlated with histopathologic response to NACT and also with the occurrence of metastases in a follow-up analysis. PATIENTS AND METHODS Fifty-four patients with invasive ductal breast carcinomas received two identical MRI examinations (before and after NACT; 1.5T, contrast medium gadoteric acid). Pre-therapeutic images were compared with post-therapeutic examinations by CAD and two blinded human observers, considering morphologic and dynamic MRI parameters as well as tumor size measurements. Imaging-assessed response to NACT was compared with histopathologically verified response. All clinical, histopathologic, and DCE-MRM parameters were correlated with the occurrence of distant metastases. RESULTS Initial and post-initial dynamic parameters significantly changed between pre- and post-therapeutic DCE-MRM. Visually evaluated DCE-MRM revealed sensitivity of 85.7%, specificity of 91.7%, and diagnostic accuracy of 87.0% in evaluating the response to NACT compared to histopathology. CAD analysis led to more false-negative findings (37.0%) compared to visual evaluation (11.1%), resulting in sensitivity of 52.4%, specificity of 100.0%, and diagnostic accuracy of 63.0%. The following dynamic MRI parameters showed significant associations to occurring metastases: Post-initial curve type before NACT (entire lesions, calculated by CAD) and post-initial curve type of the most enhancing tumor parts after NACT (calculated by CAD and manually). CONCLUSIONS In the accurate evaluation of response to neoadjuvant treatment, CAD systems can provide useful additional information due to the high specificity; however, they cannot replace visual imaging evaluation. Besides traditional prognostic factors, contrast medium-induced dynamic MRI parameters reveal significant associations to patient outcome, i.e. occurrence of distant metastases.
Resumo:
INTRODUCTION Patients admitted to intensive care following surgery for faecal peritonitis present particular challenges in terms of clinical management and risk assessment. Collaborating surgical and intensive care teams need shared perspectives on prognosis. We aimed to determine the relationship between dynamic assessment of trends in selected variables and outcomes. METHODS We analysed trends in physiological and laboratory variables during the first week of intensive care unit (ICU) stay in 977 patients at 102 centres across 16 European countries. The primary outcome was 6-month mortality. Secondary endpoints were ICU, hospital and 28-day mortality. For each trend, Cox proportional hazards (PH) regression analyses, adjusted for age and sex, were performed for each endpoint. RESULTS Trends over the first 7 days of the ICU stay independently associated with 6-month mortality were worsening thrombocytopaenia (mortality: hazard ratio (HR) = 1.02; 95% confidence interval (CI), 1.01 to 1.03; P <0.001) and renal function (total daily urine output: HR =1.02; 95% CI, 1.01 to 1.03; P <0.001; Sequential Organ Failure Assessment (SOFA) renal subscore: HR = 0.87; 95% CI, 0.75 to 0.99; P = 0.047), maximum bilirubin level (HR = 0.99; 95% CI, 0.99 to 0.99; P = 0.02) and Glasgow Coma Scale (GCS) SOFA subscore (HR = 0.81; 95% CI, 0.68 to 0.98; P = 0.028). Changes in renal function (total daily urine output and renal component of the SOFA score), GCS component of the SOFA score, total SOFA score and worsening thrombocytopaenia were also independently associated with secondary outcomes (ICU, hospital and 28-day mortality). We detected the same pattern when we analysed trends on days 2, 3 and 5. Dynamic trends in all other measured laboratory and physiological variables, and in radiological findings, changes inrespiratory support, renal replacement therapy and inotrope and/or vasopressor requirements failed to be retained as independently associated with outcome in multivariate analysis. CONCLUSIONS Only deterioration in renal function, thrombocytopaenia and SOFA score over the first 2, 3, 5 and 7 days of the ICU stay were consistently associated with mortality at all endpoints. These findings may help to inform clinical decision making in patients with this common cause of critical illness.
Resumo:
A main assumption of social production function theory is that status is a major determinant of subjective well-being (SWB). From the perspective of the dissociative hypothesis, however, upward social mobility may be linked to identity problems, distress, and reduced levels of SWB because upwardly mobile people lose their ties to their class of origin. In this paper, we examine whether or not one of these arguments holds. We employ the United Kingdom and Switzerland as case studies because both are linked to distinct notions regarding social inequality and upward mobility. Longitudinal multilevel analyses based on panel data (UK: BHPS, Switzerland: SHP) allow us to reconstruct individual trajectories of life satisfaction (as a cognitive component of SWB) along with events of intragenerational and intergenerational upward mobility—taking into account previous levels of life satisfaction, dynamic class membership, and well-studied determinants of SWB. Our results show some evidence for effects of social class and social mobility on well-being in the UK sample, while there are no such effects in the Swiss sample. The UK findings support the idea of dissociative effects in terms of a negative effect of intergenerational upward mobility on SWB.
Resumo:
PURPOSE Mechanical loading is an important parameter that alters the homeostasis of the intervertebral disc (IVD). Studies have demonstrated the role of compression in altering the cellular metabolism, anabolic and catabolic events of the disc, but little is known how complex loading such as torsion-compression affects the IVD cell metabolism and matrix homeostasis. Studying how the duration of torsion affects disc matrix turnover could provide guidelines to prevent overuse injury to the disc and suggest possible beneficial effect of torsion. The aim of the study was to evaluate the biological response of the IVD to different durations of torsional loading. METHODS Intact bovine caudal IVD were isolated for organ culture in a bioreactor. Different daily durations of torsion were applied over 7 days at a physiological magnitude (±2°) in combination with 0.2 MPa compression, at a frequency of 1 Hz. RESULTS Nucleus pulpous (NP) cell viability and total disc volume decreased with 8 h of torsion-compression per day. Gene expression analysis suggested a down-regulated MMP13 with increased time of torsion. 1 and 4 h per day torsion-compression tended to increase the glycosaminoglycans/hydroxyproline ratio in the NP tissue group. CONCLUSIONS Our result suggests that load duration thresholds exist in both torsion and compression with an optimal load duration capable of promoting matrix synthesis and overloading can be harmful to disc cells. Future research is required to evaluate the specific mechanisms for these observed effects.
Resumo:
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone's material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of thirteen femora predicted the strength (R2=0.84, SEE=540 N, 16.2%), stiffness (R2=0.82, SEE=233 N/mm, 18.0%) and fracture energy (R2=0.72, SEE=3.85 J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.
Resumo:
Kosrae is the most remote island of the Federated States of Micronesia (FSM), with a population of less than 7,000 inhabitants, located in the Pacific Ocean between Hawaii and Guam. FSM is an independent sovereign nation consisting of four states in total: Pohnpei, Chuuk, Yap, and Kosrae. Having passed through the hands of Spain, Germany and Japan, the United States gained administrative control of FSM after WWII, as commissioned by the UN. The FSM became an independent nation in 1986 while still retaining affiliation with the US under a ‘Compact of Free Association’. Now both Kosraean and English are considered to be the two official languages and the variety of Kosraean English which has arisen proves for an interesting comparative study. In order to obtain the relevant data, I spent three months on the island of Kosrae, interviewing 90 local speakers, ranging in age (16-70), occupation, sex and time spent off island. The 45 minute long interviews were informal but supported by participant information to capture relevant data and conversations were guided in a way that aimed to reveal language and cultural attitudes. With reference to these samples, I examine the effects of American English on the language use in Kosrae. This paper aims to present a broad analysis of phonological, morphosyntactic and pragmatic features, such as pro-dropping, discourse markers and other practices in order to demonstrate the similarities and differences between the two varieties, which are coming to shape the variety developing on Kosrae. Having transcribed conversations using the tool Elan, I will put particular focus on [h] deletion and insertion, a rare occurrence found in a variety of post-colonial American English which I believe is of particular interest. I assess the presence of English in Kosrae with reference to sociological influences, past and present. First, I discuss the extralinguistic factors which have shaped the English that is currently used on Kosrae, including migration between US and FSM, and English as a language of administration, social media usage and visual media presence. Secondly, I assess the use of English in this community in light of Schneider’s (2007) ‘Dynamic Model’, with reference to America’s contribution as an ‘exploitation colony’ as defined by Mufwene (2001). Finally, an overview of the salient linguistic characteristics of Kosraean English, based on the data collected will be presented and compared to features associated with standard American English in view of examining overlap and divergence. The overall objective is to present a cross-linguistic description of a hitherto unexamined English emerging in a postcolonial environment with a juxtaposed contact variety. Mufwene, Salikoko S. 2001. The ecology of language evolution. Cambridge: Cambridge University Press. Schneider, E. (2007). Postcolonial Englishes. Cambridge: Cambridge University Press. Segal, H.G. (1989) Kosrae, The Sleeping Lady Awakens. Kosrae: Kosrae Tourist Division, Dept. Of Conservation and Development. Keywords: American English, Global English, Pacific English, Morphosyntactic, Phonological, Variation, Discourse
Resumo:
OBJECTIVE To analyze prospectively the hypothalamic-pituitary-adrenal (HPA) axis and clinical outcome in patients treated with prednisone for exacerbated chronic obstructive pulmonary disease (COPD). DESIGN Prospective observational study. SUBJECTS AND METHODS Patients presenting to the emergency department were randomized to receive 40 mg prednisone daily for 5 or 14 days in a placebo-controlled manner. The HPA axis was longitudinally assessed with the 1 μg corticotropin test and a clinical hypocortisolism score at baseline, on day 6 before blinded treatment, at hospital discharge, and for up to 180 days of follow-up. Prednisone was stopped abruptly, irrespective of the test results. Patients discharged with pathological test results received instructions about emergency hydrocortisone treatment. RESULTS A total of 311 patients were included in the analysis. Mean basal and stimulated serum total cortisol levels were highest on admission (496±398 and 816±413 nmol/l respectively) and lowest on day 6 (235±174 and 453±178 nmol/l respectively). Pathological stimulation tests were found in 63, 38, 9, 3, and 2% of patients on day 6, at discharge, and on days 30, 90, and 180 respectively, without significant difference between treatment groups. Clinical indicators of hypocortisolism did not correlate with stimulation test results, but cortisol levels were inversely associated with re-exacerbation risk. There were no hospitalizations or deaths as a result of adrenal crisis. CONCLUSION Dynamic changes in the HPA axis occur during and after the treatment of acute exacerbations of COPD. In hypocortisolemic patients who were provided with instructions about stress prophylaxis, the abrupt termination of prednisone appeared safe.
Resumo:
The western corn rootworm (WCR) is a major pest of maize that is well adapted to most crop management strategies. Breeding for tolerance is a promising alternative to combat WCR, but is currently constrained by a lack of physiological understanding and phenotyping tools. We developed dynamic precision phenotyping approaches using carbon-11 with positron emission tomography, root autoradiography and radiometabolite flux analysis to understand maize tolerance to WCR. Our results reveal that WCR attack induces specific patterns of lateral root growth which are associated with a shift in auxin biosynthesis from indole-3-pyruvic acid to indole-3-acetonitrile. WCR attack also increases transport of newly synthesized amino acids to the roots, including the accumulation of glutamine. Finally, the regrowth zones of WCR attacked roots show an increase in glutamine turnover which strongly correlates with the induction of indole-3-acetonitrile-dependent auxin biosynthesis. In summary, our findings identify local changes in the auxin flux network as a promising marker for induced WCR tolerance.