63 resultados para Dérivées covariantes
Resumo:
OBJECTIVES: The aim of the study was to assess whether prospective follow-up data within the Swiss HIV Cohort Study can be used to predict patients who stop smoking; or among smokers who stop, those who start smoking again. METHODS: We built prediction models first using clinical reasoning ('clinical models') and then by selecting from numerous candidate predictors using advanced statistical methods ('statistical models'). Our clinical models were based on literature that suggests that motivation drives smoking cessation, while dependence drives relapse in those attempting to stop. Our statistical models were based on automatic variable selection using additive logistic regression with component-wise gradient boosting. RESULTS: Of 4833 smokers, 26% stopped smoking, at least temporarily; because among those who stopped, 48% started smoking again. The predictive performance of our clinical and statistical models was modest. A basic clinical model for cessation, with patients classified into three motivational groups, was nearly as discriminatory as a constrained statistical model with just the most important predictors (the ratio of nonsmoking visits to total visits, alcohol or drug dependence, psychiatric comorbidities, recent hospitalization and age). A basic clinical model for relapse, based on the maximum number of cigarettes per day prior to stopping, was not as discriminatory as a constrained statistical model with just the ratio of nonsmoking visits to total visits. CONCLUSIONS: Predicting smoking cessation and relapse is difficult, so that simple models are nearly as discriminatory as complex ones. Patients with a history of attempting to stop and those known to have stopped recently are the best candidates for an intervention.
Resumo:
Implementing the plasma-lasing potential for tabletop nano-imaging on across a hot plasma medium drives short-wavelength lasing, promising for "turnkey" nano-imaging setups. A systematic study of the illumination characteristics, combined with design-adapted objectives, is presented. It is shown how the ultimate nano-scale feature is dictated by either the diffraction-limited or the wavefront-limited resolution, which imposed a combined study of both the source and the optics. For nano-imaging, the spatial homogeneity of the illumination (spot noise) was shown as critical. Plasma-lasing from a triple grazing-incidence pumping scheme compensated for the missing spot homogeneity in classical schemes. We demonstrate that a collimating mirror pre-conditions both the pointing stability and the divergence below half a mrad.
Resumo:
Social norms pervade almost every aspect of social interaction. If they are violated, not only legal institutions, but other members of society as well, punish, i.e., inflict costs on the wrongdoer. Sanctioning occurs even when the punishers themselves were not harmed directly and even when it is costly for them. There is evidence for intergroup bias in this third-party punishment: third-parties, who share group membership with victims, punish outgroup perpetrators more harshly than ingroup perpetrators. However, it is unknown whether a discriminatory treatment of outgroup perpetrators (outgroup discrimination) or a preferential treatment of ingroup perpetrators (ingroup favoritism) drives this bias. To answer this question, the punishment of outgroup and ingroup perpetrators must be compared to a baseline, i.e., unaffiliated perpetrators. By applying a costly punishment game, we found stronger punishment of outgroup versus unaffiliated perpetrators and weaker punishment of ingroup versus unaffiliated perpetrators. This demonstrates that both ingroup favoritism and outgroup discrimination drive intergroup bias in third-party punishment of perpetrators that belong to distinct social groups.
Resumo:
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.
Resumo:
Segmented filamentous bacterium (SFB) is a symbiont that drives postnatal maturation of gut adaptive immune responses. In contrast to nonpathogenic E. coli, SFB stimulated vigorous development of Peyer's patches germinal centers but paradoxically induced only a low frequency of specific immunoglobulin A (IgA)-secreting cells with delayed accumulation of somatic mutations. Moreover, blocking Peyer's patch development abolished IgA responses to E. coli, but not to SFB. Indeed, SFB stimulated the postnatal development of isolated lymphoid follicles and tertiary lymphoid tissue, which substituted for Peyer's patches as inductive sites for intestinal IgA and SFB-specific T helper 17 (Th17) cell responses. Strikingly, in mice depleted of gut organized lymphoid tissue, SFB still induced a substantial but nonspecific intestinal Th17 cell response. These results demonstrate that SFB has the remarkable capacity to induce and stimulate multiple types of intestinal lymphoid tissues that cooperate to generate potent IgA and Th17 cell responses displaying only limited target specificity.
Resumo:
This article develops an integrative framework of the concept of perceived brand authenticity (PBA) and sheds light on PBA’s (1) measurement, (2) drivers, (3) consequences, as well as (4) an underlying process of its effects and (5) boundary conditions. A multi-phase scale development process resulted in a 15-item PBA scale to measure its four dimensions of credibility, integrity, symbolism, and continuity. PBA is influenced by indexical, existential, and iconic cues, whereby the latter’s influence is moderated by consumers’ level of marketing skepticism. Results also suggest that PBA drives brand choice likelihood through self-congruence for consumers high in self-authenticity.
Resumo:
Although brand authenticity is gaining increasing interest in consumer behavior research and managerial practice, literature on its measurement and contribution to branding theory is still limited. This article develops an integrative framework of the concept of brand authenticity and reports the development and validation of a scale measuring consumers' perceived brand authenticity (PBA). A multi-phase scale development process resulted in a 15-item PBA scale measuring four dimensions: credibility, integrity, symbolism, and continuity. This scale is reliable across different brands and cultural contexts. We find that brand authenticity perceptions are influenced by indexical, existential, and iconic cues, whereby some of the latters' influence is moderated by consumers' level of marketing skepticism. Results also suggest that PBA increases emotional brand attachment and word-of-mouth, and that it drives brand choice likelihood through self-congruence for consumers high in self-authenticity.
Resumo:
Although brand authenticity is gaining increasing interest in consumer behavior research and managerial practice, literature on its measurement and contribution to branding theory is still limited. This article develops an integrative framework of the concept of brand authenticity and reports the development and validation of a scale measuring consumers' perceived brand authenticity (PBA). A multi-phase scale development process resulted in a 15-item PBA scale measuring four dimensions: credibility, integrity, symbolism, and continuity. This scale is reliable across different brands and cultural contexts. We find that brand authenticity perceptions are influenced by indexical, existential, and iconic cues, whereby some of the latters' influence is moderated by consumers' level of marketing skepticism. Results also suggest that PBA increases emotional brand attachment and word-of-mouth, and that it drives brand choice likelihood through self-congruence for consumers high in self-authenticity.
Resumo:
Deep geological storage of radioactive waste foresees cementitious materials as reinforcement of tunnels and as backfill. Bentonite is proposed to enclose spent fuel canisters and as drift seals. Sand/bentonite (s/b) is foreseen as backfill material of access galleries or as drift seals. The emplacement of cementitious material next to clay material generates an enormous chemical gradient in pore-water composition that drives diffusive solute transport. Laboratory studies and reactive transport modeling predicted significant mineral alteration at and near interfaces, mainly resulting in a decrease of porosity in bentonite. The goal of this thesis was to characterize and quantify the cement/bentonite interactions both spatially and temporally in laboratory experiments. A newly developed mobile X-ray transparent core infiltration device was used to perform X-ray computed tomography (CT) scans without interruption of running experiments. CT scans allowed tracking the evolution of the reaction plume and changes in core volume/diameter/density during the experiments. In total 4 core infiltration experiments were carried out for this study with the compacted and saturated cores consisting of MX-80 bentonite and sand/MX-80 bentonite mixture (s/b; 65/35%). Two different high-pH cementitious pore-fluids were infiltrated: a young (early) ordinary Portland cement pore-fluid (APWOPC; K+–Na+–OH-; pH 13.4; ionic strength 0.28 mol/kg) and a young ‘low-pH’ ESDRED shotcrete pore-fluid (APWESDRED; Ca2+–Na+–K+–formate; pH 11.4; ionic strength 0.11 mol/kg). The experiments lasted between 1 and 2 years. In both bentonite experiments, the hydraulic conductivity was strongly reduced after switching to high-pH fluids, changing eventually from an advective to a diffusion-dominated transport regime. The reduction was mainly induced by mineral precipitation and possibly partly also by high ionic strength pore-fluids. Both bentonite cores showed a volume reduction and a resulting transient flow in which pore-water was squeezed out during high-pH infiltration. The outflow chemistry was characterized by a high ionic strength, while chloride in the initial pore water got replaced as main anionic charge carrier by sulfate, originating from gypsum dissolution. The chemistry of the high-pH fluids got strongly buffered by the bentonite, consuming hydroxide and in case of APWESDRED also formate. Hydroxide got consumed by mineral reactions (saponite and possibly talc and brucite precipitation), while formate being affected by bacterial degradation. Post-mortem analysis showed reaction zones near the inlet of the bentonite core, characterized by calcium and magnesium enrichment, consisting predominately of calcite and saponite, respectively. Silica got enriched in the outflow, indicating dissolution of silicate-minerals, identified as preferentially cristobalite. In s/b, infiltration of APWOPC reduced the hydraulic conductivity strongly, while APWESDRED infiltration had no effect. The reduction was mainly induced by mineral precipitation and probably partly also by high ionic strength pore-fluids. Not clear is why the observed mineral precipitates in the APWESDRED experiment had no effect on the fluid flow. Both s/b cores showed a volume expansion along with decreasing ionic strengths of the outflow, due to mineral reactions or in case of APWESDRED infiltration also mediated by microbiological activity, consuming hydroxide and formate, respectively. The chemistry of the high-pH fluids got strongly buffered by the s/b. In the case of APWESDRED infiltration, formate reached the outflow only for a short time, followed by enrichment in acetate, indicating most likely biological activity. This was in agreement to post-mortem analysis of the core, observing black spots on the inflow surface, while the sample had a rotten-egg smell indicative of some sulfate reduction. Post-mortem analysis showed further in both cores a Ca-enrichment in the first 10 mm of the core due to calcite precipitation. Mg-enrichment was only observed in the APWOPC experiment, originating from newly formed saponite. Silica got enriched in the outflow of both experiments, indicating dissolution of silicate-minerals, identified in the OPC experiment as cristobalite. The experiments attested an effective buffering capacity for bentonite and s/b, a progressing coupled hydraulic-chemical sealing process and also the preservation of the physical integrity of the interface region in this setup with a total pressure boundary condition on the core sample. No complete pore-clogging was observed but the hydraulic conductivity got rather strongly reduced in 3 experiments, explained by clogging of the intergranular porosity (macroporosity). Such a drop in hydraulic conductivity may impact the saturation time of the buffer in a nuclear waste repository, although the processes and geometry will be more complex in repository situation.
Resumo:
Bipolar elongation of filaments of the bacterial actin homolog ParM drives movement of newly replicated plasmid DNA to opposite poles of a bacterial cell. We used a combination of vitreous sectioning and electron cryotomography to study this DNA partitioning system directly in native, frozen cells. The diffraction patterns from overexpressed ParM bundles in electron cryotomographic reconstructions were used to unambiguously identify ParM filaments in Escherichia coli cells. Using a low-copy number plasmid encoding components required for partitioning, we observed small bundles of three to five intracellular ParM filaments that were situated close to the edge of the nucleoid. We propose that this may indicate the capture of plasmid DNA within the periphery of this loosely defined, chromosome-containing region.
Resumo:
IgA is induced through T-cell-dependent and -independent pathways. In this issue, Bunker et al. (2015) now show that the T-cell-independent pathway is sufficient to coat most small intestinal microbes specifically, and Fransen et al. (2015) find that IgA coating promotes uptake of microbes into Peyer's patches and drives further induction in a positive-feedback loop.
Resumo:
The tumor microenvironment is known to play a pivotal role in driving cancer progression and governing response to therapy. This is of significance in pancreatic cancer where the unique pancreatic tumor microenvironment, characterized by its pronounced desmoplasia and fibrosis, drives early stages of tumor progression and dissemination, and contributes to its associated low survival rates. Several molecular factors that regulate interactions between pancreatic tumors and their surrounding stroma are beginning to be identified. Yet broader physiological factors that influence these interactions remain unclear. Here, we discuss a series of preclinical and mechanistic studies that highlight the important role chronic stress plays as a physiological regulator of neural-tumor interactions in driving the progression of pancreatic cancer. These studies propose several approaches to target stress signaling via the β-adrenergic signaling pathway in order to slow pancreatic tumor growth and metastasis. They also provide evidence to support the use of β-blockers as a novel therapeutic intervention to complement current clinical strategies to improve cancer outcome in patients with pancreatic cancer.
Resumo:
BACKGROUND & AIMS The interaction of KIR with their HLA ligands drives the activation and inhibition of natural killer (NK) cells. NK cells could be implicated in the development of liver fibrosis in chronic hepatitis C. METHODS We analysed 206 non-transplanted and 53 liver transplanted patients, selected according to their Metavir fibrosis stage. Several variables such as the number of activator KIR or the HLA ligands were considered in multinomial and logistic regression models. Possible confounding variables were also investigated. RESULTS The KIRs were not significant predictors of the fibrosis stage. Conversely, a significant reduction of the HLA-C1C2 genotype was observed in the most advanced fibrosis stage group (F4) in both cohorts. Furthermore, the progression rate of fibrosis was almost 10 times faster in the subgroup of patients after liver transplantation and HLA-C1C2 was significantly reduced in this cohort compared to non-transplanted patients. CONCLUSION This study suggests a possible role of KIR and their ligands in the development of liver damage. The absence of C1 and C2 ligands heterozygosity could lead to less inhibition of NK cells and a quicker progression to a high level of fibrosis in patients infected by HCV, especially following liver transplantation. This article is protected by copyright. All rights reserved.
Resumo:
We resolve the real-time dynamics of a purely dissipative s=1/2 quantum spin or, equivalently, hard-core boson model on a hypercubic d-dimensional lattice. The considered quantum dissipative process drives the system to a totally symmetric macroscopic superposition in each of the S3 sectors. Different characteristic time scales are identified for the dynamics and we determine their finite-size scaling. We introduce the concept of cumulative entanglement distribution to quantify multiparticle entanglement and show that the considered protocol serves as an efficient method to prepare a macroscopically entangled Bose-Einstein condensate.
Resumo:
The burial of organic carbon in marine sediments removes carbon dioxide from the ocean–atmosphere pool, provides energy to the deep biosphere, and on geological timescales drives the oxygenation of the atmosphere. Here we quantify natural variations in the burial of organic carbon in deep-sea sediments over the last glacial cycle. Using a new data compilation of hundreds of sediment cores, we show that the accumulation rate of organic carbon in the deep sea was consistently higher (50%) during glacial maxima than during interglacials. The spatial pattern and temporal progression of the changes suggest that enhanced nutrient supply to parts of the surface ocean contributed to the glacial burial pulses, with likely additional contributions from more efficient transfer of organic matter to the deep sea and better preservation of organic matter due to reduced oxygen exposure. These results demonstrate a pronounced climate sensitivity for this global carbon cycle sink.