88 resultados para Cytokeratin Expression Patterns
Resumo:
Transmigration through the liver endothelium is a prerequisite for the homeostatic balance of intrahepatic T cells and a key regulator of inflammatory processes within the liver. Extravasation into the liver parenchyma is regulated by the distinct expression patterns of adhesion molecules and chemokines and their receptors on the lymphocyte and endothelial cell surface. In the present study, we investigated whether liver sinusoidal endothelial cells (LSEC) inhibit or support the chemokine-driven transmigration and differentially influence the transmigration of pro-inflammatory or anti-inflammatory CD4(+) T cells, indicating a mechanism of hepatic immunoregulation. Finally, the results shed light on the molecular mechanisms by which LSEC modulate chemokine-dependent transmigration. LSEC significantly enhanced the chemotactic effect of CXC-motif chemokine ligand 12 (CXCL12) and CXCL9, but not of CXCL16 or CCL20, on naive and memory CD4(+) T cells of a T helper 1, T helper 2, or interleukin-10-producing phenotype. In contrast, brain and lymphatic endothelioma cells and ex vivo isolated lung endothelia inhibited chemokine-driven transmigration. As for the molecular mechanisms, chemokine-induced activation of LSEC was excluded by blockage of G(i)-protein-coupled signaling and the use of knockout mice. After preincubation of CXCL12 to the basal side, LSEC took up CXCL12 and enhanced transmigration as efficiently as in the presence of the soluble chemokine. Blockage of transcytosis in LSEC significantly inhibited this effect, and this suggested that chemokines taken up from the basolateral side and presented on the luminal side of endothelial cells trigger T cell transmigration. CONCLUSION: Our findings demonstrate a unique capacity of LSEC to present chemokines to circulating lymphocytes and highlight the importance of endothelial cells for the in vivo effects of chemokines. Chemokine presentation by LSEC could provide a future therapeutic target for inhibiting lymphocyte immigration and suppressing hepatic inflammation.
Resumo:
Repeated exposure to psychomotor stimulants produces a striking behavioral syndrome involving repetitive, stereotypic behaviors that occur if an additional exposure to the stimulant is experienced. The same stimulant exposure produces specific alterations in gene expression patterns in the striatum. To identify the dopamine receptor subtypes required for the parallel expression of these acquired neural and behavioral responses, we treated rats with different D1-class and D2-class dopamine receptor agonists and compared the responses of drug-naive rats with those of rats given previous intermittent treatment with cocaine. In rats exposed to repeated cocaine treatment, the effects of a subsequent challenge treatment with either a D1-class agonist (SKF 81297) or a D2-class agonist (quinpirole) were not significantly different from those observed in drug-naive animals: the drugs administered singly did not induce robust stereotyped motor behaviors nor produce significantly striosome-predominant expression of early genes in the striatum. In contrast, challenge treatment with the D1-class and D2-class agonists in combination led to marked and correlated increases in stereotypy and striosome-predominant gene expression in the striatum. Thus, immediately after repeated psychomotor stimulant exposure, only the concurrent activation of D1 and D2 receptor subclasses evoked expression of the neural and behavioral phenotypes acquired through repeated cocaine exposure. These findings suggest that D1-D2 dopamine receptor synergisms underlie the coordinate expression of both network-level changes in basal ganglia activation patterns and the repetitive and stereotypic motor response patterns characteristic of psychomotor stimulant sensitization.
Resumo:
OBJECTIVE: MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue-specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA-140 (miR-140). METHODS: To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR-140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin-1beta (IL-1beta) on miR-140 expression. Double-stranded miR-140 (ds-miR-140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA. RESULTS: Microarray analysis showed that miR-140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR-140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR-140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL-1beta suppressed miR-140 expression. Transfection of chondrocytes with ds-miR-140 down-regulated IL-1beta-induced ADAMTS5 expression and rescued the IL-1beta-dependent repression of AGGRECAN gene expression. CONCLUSION: This study shows that miR-140 has a chondrocyte differentiation-related expression pattern. The reduction in miR-140 expression in OA cartilage and in response to IL-1beta may contribute to the abnormal gene expression pattern characteristic of OA.
Resumo:
African trypanosomes are insect-borne parasites that cause sleeping sickness in humans and nagana in domesticated animals. Successful transmission is the outcome of crosstalk between the trypanosome and its insect vector, the tsetse fly. This enables the parasite to undergo successive rounds of differentiation, proliferation and migration, culminating in the infection of a new mammalian host. Several stage- and species-specific parasite surface molecules have been identified and there are new insights into their regulation in the fly. Tsetse flies are often refractory to infection with trypanosomes. While many environmental and physiological factors are known to influence infection, our detailed understanding of tsetse-trypanosome relationships is still in its infancy. Recent studies have identified a number of tsetse genes that show altered expression patterns in response to microbial infections, some of which have also been implicated in modulating trypanosome transmission.
Resumo:
Chemokines are a superfamily of small chemotactic cytokines, which interact with their G-protein-coupled receptors. These interactions regulate multiple physiological functions, particularly tissue architecture and compartment-specific migration of white blood cells. It has been found that the chemokine/chemokine receptor system has been utilized by cancer cells for migration and metastasis. The chemokine receptor CCR6 is expressed in colorectal cancer and several other cancer types, and stimulation by its physiological chemokine ligand CCL20 has been reported to promote cancer cell proliferation and migration in vitro. Moreover, CCR6/CCL20 interactions apparently play a role in organ selective liver metastasis of colorectal cancer. Here, we review the literature on expression patterns of CCL20 and CCR6 and their physiological interactions as well as the currently presumed role of CCR6 and CCL20 in the formation of colorectal cancer liver metastasis, providing a potential basis for novel treatment strategies.
Resumo:
Papillomaviruses (PV) are double stranded (ds) DNA viruses that infect epithelial cells within the skin or mucosa, most often causing benign neoplasms that spontaneously regress. The immune system plays a key role in the defense against PVs. Since these viruses infect keratinocytes, we wanted to investigate the role of the keratinocyte in initiating an immune response to canine papillomavirus-2 (CPV-2) in the dog. Keratinocytes express a variety of pattern recognition receptors (PRR) to distinguish different cutaneous pathogens and initiate an immune response. We examined the mRNA expression patterns for several recently described cytosolic nucleic acid sensing PRRs in canine monolayer keratinocyte cultures using quantitative reverse transcription-polymerase chain reaction. Unstimulated normal cells were found to express mRNA for melanoma differentiation associated gene 5 (MDA5), retinoic acid-inducible gene I (RIG-I), DNA-dependent activation of interferon regulatory factors, leucine rich repeat flightless interacting protein 1, and interferon inducible gene 16 (IFI16), as well as their adaptor molecules myeloid differentiation primary response gene 88, interferon-β promoter stimulator 1, and endoplasmic reticulum-resident transmembrane protein stimulator of interferon genes. When stimulated with synthetic dsDNA [poly(dA:dT)] or dsRNA [poly(I:C)], keratinocytes responded with increased mRNA expression levels for interleukin-6, tumor necrosis factor-α, interferon-β, RIG-I, IFI16, and MDA5. There was no detectable increase in mRNA expression, however, in keratinocytes infected with CPV-2. Furthermore, CPV-2-infected keratinocytes stimulated with poly(dA:dT) and poly(I:C) showed similar mRNA expression levels for these gene products when compared with expression levels in uninfected cells. These results suggest that although canine keratinocytes contain functional PRRs that can recognize and respond to dsDNA and dsRNA ligands, they do not appear to recognize or initiate a similar response to CPV-2.
Resumo:
Two peptide transporter (PTR) homologs have been isolated from developing seeds of faba bear, (Vicia faba). VfPTR1 was shown to be a functional peptide transporter through complementation of a yeast mutant. Expression patterns of VfPTR1 and VfPTR2 as well as of the amino acid permease VfAAP1 (Miranda et al., 2001) were compared throughout seed development and germination. In developing seeds, the highest levels of VfPTR1 transcripts were reached during midcotyledon development, whereas VfAAP1 transcripts were most abundant during early cotyledon development, before the appearance of storage protein gene transcripts, and were detectable until late cotyledon development. During early germination, VfPTR1 mRNA appeared first in cotyledons and later, during seedling growth, also in axes and roots. Expression of VfPTR2 and VfAAP1 was delayed compared with VfPTR1, and was restricted to the nascent organs of the seedlings. Localization of VfPTR1 transcripts showed that this FTR is temporally and spatially regulated during cotyledon development. In germinating seeds, VfPTR1 mRNA was localized in root hairs and root epidermal cells, suggesting a role in nutrient uptake from the soil. In seedling roots, VfPTR1 was repressed by a dipeptide and by an amino acid, whereas nitrate was without influence.
Resumo:
Arabidopsis amino acid transporters (AAPs) show individual temporal and spatial expression patterns. A new amino acid transporter, AAP8 was isolated by reverse transcription-PCR. Growth and transport assays in comparison to AAP1-5 characterize AAP8 and AAP6 as high affinity amino acid transport systems from Arabidopsis. Histochemical promoter-beta-glucuronidase (GUS) studies identified AAP6 expression in xylem parenchyma, cells requiring high affinity transport due to the low amino acid concentration in xylem sap. AAP6 may thus function in uptake of amino acids from xylem. Histochemical analysis of AAP8 revealed stage-dependent expression in siliques and developing seeds. Thus AAP8 is probably responsible for import of organic nitrogen into developing seeds. The only missing transporter of the family AAP7 was nonfunctional in yeast with respect to amino acid transport, and expression was not detectable. Therefore, AAP6 and -8 are the only members of the family able to transport aspartate with physiologically relevant affinity. AAP1, -6 and -8 are the closest AAP paralogs. Although AAP1 and AAP8 originate from a duplicated region on chromosome I, biochemical properties and expression pattern diverged. Overlapping substrate specificities paired with individual properties and expression patterns point to specific functions of each of the AAP genes in nitrogen distribution rather than to mere redundancy.
Resumo:
Tenascins are extracellular matrix proteins with distinct spatial and temporal expression during development, tissue homeostasis and disease. Based on their expression patterns and knockout phenotypes an important role of tenascins in tissue formation, cell adhesion modulation, regulation of proliferation and differentiation has been demonstrated. All of these features are of importance in stem cell niches where a precise regulation of growth versus differentiation has to be guaranteed. In this review we summarize the expression and possible functions of tenascins in neural, epithelial and osteogenic stem cell niches during normal development and organ turnover, in the hematopoietic and pro-inflammatory niche as well as in the metastatic niche during cancer progression.
Resumo:
Post-transcriptional cleavage of RNA molecules to generate smaller fragments is a widespread mechanism that enlarges the structural and functional complexity of cellular RNomes. In particular, fragments deriving from both precursor and mature tRNAs represent one of the rapidly growing classes of post-transcriptional RNA pieces. Importantly, these tRNA-derived fragments (tRFs) possess distinct expression patterns, abundance, cellular localizations, or biological roles compared with their parental tRNA molecules (1). Here we present evidence that tRFs from the archaeon Haloferax volcanii directly bind to ribosomes. In a previous genomic screen for ribosome-associated small RNAs we have identified a 26 residue long fragment originating from the 5’ part of valine tRNA (Val-tRF) to be by far the most abundant tRF in H. volcanii (2). The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. Translational activity was markedly reduced in the presence of Val-tRF, while control RNA fragments of similar length did not show inhibition of protein biosynthesis. Crosslinking experiments and subsequent primer extension analyses revealed the Val-tRF interaction site to surround the mRNA path in the 30S subunit. In support of this, binding experiments demonstrated that Val-tRF does compete with mRNAs for ribosome binding. Therefore this tRF represents a ribosome-bound non-protein-coding RNA (ncRNA) capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production (1). (1) Gebetsberger J. and Polacek N. (2013), RNA Biol. 10:1798-1808 (2) Gebetsberger J. et. al. (2012), Archaea, Article ID 260909
Resumo:
The transition from the nonlactating to the lactating state represents a critical period for dairy cow lipid metabolism because body reserves have to be mobilized to meet the increasing energy requirements for the initiation of milk production. The purpose of this study was to provide a comprehensive overview on cholesterol homeostasis in transition dairy cows by assessing in parallel plasma, milk, and hepatic tissue for key factors of cholesterol metabolism, transport, and regulation. Blood samples and liver biopsies were taken from 50 multiparous Holstein dairy cows in wk 3 antepartum (a.p.), wk 1 postpartum (p.p.), wk 4 p.p., and wk 14 p.p. Milk sampling was performed in wk 1, 4, and 14 p.p. Blood and milk lipid concentrations [triglycerides (TG), cholesterol, and lipoproteins], enzyme activities (phospholipid transfer protein and lecithin:cholesterol acyltransferase) were analyzed using enzymatic assays. Hepatic gene expression patterns of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGC) synthase 1 (HMGCS1) and HMGC reductase (HMGCR), sterol regulatory element-binding factor (SREBF)-1 and -2, microsomal triglyceride transfer protein (MTTP), ATP-binding cassette transporter (ABC) A1 and ABCG1, liver X receptor (LXR) α and peroxisome proliferator activated receptor (PPAR) α and γ were measured using quantitative RT-PCR. Plasma TG, cholesterol, and lipoprotein concentrations decreased from wk 3 a.p. to a minimum in wk 1 p.p., and then gradually increased until wk 14 p.p. Compared with wk 4 p.p., phospholipid transfer protein activity was increased in wk 1 p.p., whereas lecithin:cholesterol acyltransferase activity was lowest at this period. Total cholesterol concentration and mass, and cholesterol concentration in the milk fat fraction decreased from wk 1 p.p. to wk 4 p.p. Both total and milk fat cholesterol concentration were decreased in wk 4 p.p. compared with wk 1 and 14 p.p. The mRNA abundance of genes involved in cholesterol synthesis (SREBF-2, HMGCS1, and HMGCR) markedly increased from wk 3 a.p. to wk 1 p.p., whereas SREBF-1 was downregulated. The expression of ABCA1 increased from wk 3 a.p. to wk 1 p.p., whereas ABCG1 was increased in wk 14 p.p. compared with other time points. In conclusion, hepatic expression of genes involved in the biosynthesis of cholesterol as well as the ABCA1 transporter were upregulated at the onset of lactation, whereas plasma concentrations of total cholesterol, phospholipids, lipoprotein-cholesterol, and TG were at a minimum. Thus, at the gene expression level, the liver seems to react to the increased demand for cholesterol after parturition. Whether the low plasma cholesterol and TG levels are due to impaired hepatic export mechanisms or reflect an enhanced transfer of these compounds into the milk to provide essential nutrients for the newborn remains to be elucidated.
Resumo:
The aim of this study was to investigate whether there is a correlation between the expressions of four matrix metalloproteinases (MMPs): MMP-2, MMP-7, MMP-9 and MMP-13, and the TNM (tumour-node-metastasis) stages of oral squamous cell carcinoma (OSCC); and to explore the implication of these MMPs in OSCC dissemination. Samples from 61 patients diagnosed with oropharyngeal tumour were studied by immunohistochemistry against MMP-2, MMP-7, MMP-9 and MMP-13. The assessment of immunoreactivity was semi-quantitative. The results showed that MMP-2 and MMP-9 had similar expression patterns in the tumour cells with no changes in the immunoreactivity during tumour progression. MMP-9 always had the highest expression, whereas that of MMP-2 was moderate. MMP-7 showed a significant decrease in expression levels during tumour evolution. MMP-13 had constant expression levels within stage T2 and T3, but showed a remarkable decline in immunoreactivity in stage T4. No significant differences in the MMPs immunoreactivity between tumour cells and stroma were observed. Although strong evidence for the application of MMPs as reliable predictive markers for node metastasis was not acquired, we believe that combining patients' MMPs expression intensity and clinical features may improve the diagnosis and prognosis. Strong evidence for the application of MMPs as reliable predictive markers for node metastasis was not acquired. Application of MMPs as prognostic indicators for the malignancy potential of OSCC might be considered in every case of tumour examination. We believe that combining patients' MMPs expression intensity and clinical features may improve the process of making diagnosis and prognosis.
Resumo:
Several (pre-) clinical trials are currently investigating the benefit of HER2-targeted therapy in urothelial bladder cancer (UBC). Patients with HER2 amplified UBC could potentially profit from these therapies. However, little is known about histomorphology, HER2 protein expression patterns and occurrence of alterations in the HER2 gene in their tumors. Among 150 metastasizing primary UBC, 13 HER2 amplified tumors were identified. Their histopathological features were compared with 13 matched, non-amplified UBC. HER2 protein expression was determined by immunohistochemistry. The 26 tumors were screened for mutations in exons 19 and 20 of the HER2 gene. UBC with HER2 amplification presented with a broad variety of histological variants (median 2 vs. 1), frequently featured micropapillary tumor components (77 % vs. 8 %) and demonstrated a high amount of tumor associated inflammation. Immunohistochemically, 10 of 13 (77 %) HER2 amplified tumors were strongly HER2 protein positive. Three tumors (23 %) were scored as HER2 negative. One of the HER2 amplified tumors harbored a D769N mutation in exon 19 of the HER2 gene; all other tested tumors were wild type. In conclusion, HER2 amplified UBC feature specific morphological characteristics. They frequently express the HER2 protein diffusely and are, therefore, promising candidates for HER2 targeted therapies. The detection of mutations at the HER2 locus might add new aspects to molecular testing of UBC.
Resumo:
Herbivore-induced volatiles play an important role in the indirect defense of plants. After herbivore damage, volatiles are released from the plant and can attract herbivore enemies that protect the plant from additional damage. The herbivore-induced volatile blend is complex and usually consists of mono- and sesquiterpenes, aromatic compounds, and indole. Although these classes of compounds are generally produced at different times after herbivore damage, the release of the terpene (E)-β-caryophyllene and the aromatic ester methyl anthranilate appear to be tightly coordinated. We have studied the herbivore induction patterns of two terpene synthases from Zea mays L. (Poaceae), TPS23 and TPS10, as well as S-adenosyl-L-methionine:anthranilic acid carboxyl methyltransferases (AAMT1), which are critical for the production of terpenes and anthranilate compounds, respectively. The transcript levels of tps23 and aamt1 displayed the same kinetics after damage by the larvae of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), and showed the same organ-specific and haplotype-specific expression patterns. Despite its close functional relation to TPS23, the terpene synthase TPS10 is not expressed in roots and does not display the haplotype-specific expression pattern. The results indicate that the same JA-mediated signaling cascade maycontrol the production of both the terpene (E)-β-caryophyllene and aromatic ester methyl anthranilate.
Resumo:
Objectives Pharyngeal arches develop in the head and neck regions, and give rise to teeth, oral jaws, the hyoid bone, operculum, gills, and pharyngeal jaws in teleosts. In this study, the expression patterns of genes in the sonic hedgehog (shh), wnt, ectodysplasin A (eda), and bone morphogenetic protein (bmp) pathways were investigated in the pharyngeal arches of Haplochromis piceatus, one of the Lake Victoria cichlids. Furthermore, the role of the shh pathway in pharyngeal arch development in H. piceatus larvae was investigated. Methods The expression patterns of lymphocyte enhancer binding factor 1 (lef1), ectodysplasin A receptor (edar), shh, patched 1 (ptch1), bmp4, sp5 transcription factor (sp5), sclerostin domain containing 1a (sostdc1a), and dickkopf 1 (dkk1) were investigated in H. piceatus larvae by in situ hybridization. The role of the shh pathway was investigated through morphological phenotypic characterization after its inhibition. Results We found that lef1, edar, shh, ptch1, bmp4, dkk1, sostdc1a, and sp5 were expressed not only in the teeth, but also in the operculum and gill filaments of H piceatus larvae. After blocking the shh pathway using cyclopamine, we observed ectopic shh expression and the disappearance of ptch1 expression. After six weeks of cyclopamine treatment, an absence of teeth in the oral upper jaws and a poor outgrowth of premaxilla, operculum, and gill filaments in juvenile H. piceatus were observed. Conclusions These results suggest that the shh pathway is important for the development of pharyngeal arch derivatives such as teeth, premaxilla, operculum, and gill filaments in H. piceatus.