49 resultados para Cromated collagen
Resumo:
For autologous chondrocyte transplantation, articular chondrocytes are harvested from cartilage tissue and expanded in vitro in monolayer culture. We aimed to characterize with a cellular resolution the synthesis of collagen type II (COL2) and collagen type I (COL1) during expansion in order to further understand why these cells lose the potential to form cartilage tissue when re-introduced into a microenvironment that supports chondrogenesis. During expansion for six passages, levels of transcripts encoding COL2 decreased to <0.1%, whereas transcript levels encoding COL1 increased 370-fold as compared to primary chondrocytes. Flow cytometry for intracellular proteins revealed that chondrocytes acquired a COL2/COL1-double positive phenotype during expansion, and the COL2 positive cells were able to enter the cell cycle. While the fraction of COL2 positive cells decreased from 70% to <2% in primary chondrocytes to passage six cells, the fraction of COL1 positive cells increased from <1% to >95%. In parallel to the decrease of the fraction of COL2 positive cells, the cells' potential to form cartilage-like tissue in pellet cultures steadily decreased. Intracellular staining for COL2 enables for characterization of chondrocyte lineage cells in more detail with a cellular resolution, and it may allow predicting the effectiveness of expanded chondrocytes to form cartilage-like tissue.
Resumo:
OBJECTIVES To histologically evaluate the effectiveness of a porcine derived collagen matrix (CM) and a subepithelial connective tissue graft (CTG) for coverage of localized gingival recessions. MATERIALS AND METHODS Chronic single Miller Class I-like recessions were created at the buccal at the canines and at the third and fourth premolars in the upper and lower jaws of six beagle dogs. The defects were randomly treated with (1) coronally advanced flap surgery (CAF) + CM, (2) CAF + CTG, or (3) CAF alone. At 12 weeks, histometric measurements were made, e.g., between a reference point (N) - and the gingival margin (GM) - and the outer contour of the adjacent soft tissue (gingival thickness [GT]). RESULTS The postoperative healing was uneventful in all animals. No complications such as allergic reactions, abscesses or infections were noted throughout the entire study period. All three treatments resulted in coverage of localized gingival recessions. The histological analysis failed to identify any residues of CM or CTG. The histometric measurements revealed comparable outcomes for N-GM and GT values for all three groups (CAF + CM: 1.04 ± 0.69 mm/0.68 ± 0.33 mm; CAF + CTG: 1.15 ± 1.12 mm/0.76 ± 0.37 mm; CAF: 1.43 ± 0.45 mm/0.79 ± 0.24 mm). CONCLUSIONS In the used defect model, the application of CTG or CM in conjunction with CAF did not have an advantage over the use of CAF alone. CLINICAL RELEVANCE The use of CAF alone is a valuable option for the treatment localized Miller Class I recessions.
Resumo:
PURPOSE Dynamic intraligamentary stabilization was recently proposed as an option for the treatment of acute ACL ruptures. The aim of this study was to investigate the feasibility of the procedure in mid-substance ACL ruptures and examine whether the additional application of a bilayer collagen I/III membrane would provide for a superior outcome. METHODS The study group consisted of patients presenting with a mid-substance ACL rupture undergoing dynamic intraligamentary stabilization using the Ligamys™ device along with application of a collagen I/III membrane to the surface of the ACL (group A, n = 23). The control group comprised a matched series of patients presenting with a mid-substance ACL rupture also treated by dynamic intraligamentary stabilization Ligamys™ repair, however, without additional collagen application (group B, n = 33). Patients were evaluated preoperatively and at 24-month follow-up for stability as well as Tegner and Lysholm scores. Knee laxity was measured as a difference in anterior translation (ΔAP) and pivot shift. Any events occurring during the follow-up period of 24 months were documented. Logistic regression of complications was performed, and adjustment undertaken where necessary. RESULTS A high total complication rate of 78.8 % was noted in group B, compared to group A (8.7 %) (p = 0.002). The addition of a collagen membrane was the only independent prognostic factor associated with reduced complications (OR 8.0, CI 2.0-32.2, p = 0.003, for collagen-free treatment). In group B, 6 patients suffered a re-rupture with subsequent instability requiring secondary hamstring reconstruction surgery, and 11 developed extension loss requiring arthroscopic debridement, whilst in group A, 2 patients required arthroscopic debridement for loss of exension, with no further encountered complication. Median Lysholm score was significantly higher in group A compared to group B (median 100 range 93-100 vs median 95 range 60-100, p = 0.03) at final follow-up. CONCLUSIONS A high complication rate following ACL Ligamys™ repair of mid-substance ruptures was noted. Application of a collagen membrane to the surface of the ACL resulted in a reduced incidence of extension deficit and re-ruptures. The results indicate that solitary ACL Ligamys™ repair does not present an appropriate treatment modality for mid-substance ACL ruptures. Collage application proved to provide healing benefits with superior clinical outcome after ACL repair. LEVEL OF EVIDENCE Case control study, Level III.
Resumo:
BACKGROUND Bone morphogenetic protein 9 (BMP9) has previously been characterized as one of the most osteogenic growth factors of the BMP-family, however, up until now, these experiments have only been demonstrated using adenovirus-transfection experiments (gene therapy). With the recent development of recombinant human (rh)BMP9, the aim of the present study was to investigate its osteopromotive potential versus rhBMP2 when loaded onto a collagen membrane. METHODS ST2 stromal bone marrow cells were seeded onto 1)control; 2)rhBMP2-low(10ng/ml); 3)rhBMP2-high(100ng/ml); 4)rhBMP9-low(10ng/ml); and 5)rhBMP9-high(100ng/ml) porcine collagen membranes. Groups were then compared for cell adhesion at 8 hours, cell proliferation at 1, 3 and 5 days real-time PCR at 3 and 14 days for genes encoding Runx2, alkaline phosphatase(ALP) and bone sialoprotein(BSP) at 3 and 14 days and alizarin red staining at 14 days. RESULTS While rhBMP2 and rhBMP9 demonstrated little effects on cell attachment and proliferation, pronounced increases were observed on osteoblast differentiation. It was found that all groups significantly induced ALP mRNA levels at 3 days and BSP levels at 14 days, however rhBMP9-high demonstrated significantly higher values when compared to all other groups for ALP levels (5-fold increase at 3 days and 2-fold increase at 14 days). Alizarin red staining further revealed that both concentrations of rhBMP9 induced up to 3-fold more staining when compared to rhBMP2. CONCLUSION These results indicate that the combination of collagen membranes with rhBMP9 significantly induced significantly higher ALP mRNA expression and alizarin red staining when compared to rhBMP2. These findings suggest that rhBMP9 may be a suitable growth factor for future regenerative procedures in bone biology.