50 resultados para Corynebacterium pseudodiphtheriticum -HEp-2 cells
Resumo:
Two BDF-based organic sensitizers, as first examples for their use in dye-sensitized solar cells, are prepared and characterized. They yield promising power conversion efficiencies of up to 5.5 and high open circuit voltages up to 0.82 V. This work demonstrates that the BDF chromophore acts as an effective donor in organic sensitizers.
Resumo:
Bcl-2 oncogene expression plays a role in the establishment of persistent viral infection by blocking virus-induced apoptosis. This might be achieved by preventing virus-induced activation of caspase-3, an IL-1beta-converting enzyme (ICE)-like cysteine protease that has been implicated in the death effector phase of apoptosis. Contrary to this model, we show that three cell types highly overexpressing functional Bcl-2 displayed caspase-3 activation and underwent apoptosis in response to infection with alphaviruses Semliki Forest and Sindbis as efficiently as vector control counterparts. In all three cell types, overexpressed 26 kDa Bcl-2 was cleaved into a 23 kDa protein. Antibody epitope mapping revealed that cleavage occurred at one or two target sites for caspases within the amino acid region YEWD31 (downward arrow) AGD34 (downward arrow) A, removing the N-terminal BH4 region known to be essential for the death-protective activity of Bcl-2. Preincubation of cells with the caspase inhibitor Z-VAD prevented Bcl-2 cleavage and partially restored the protective activity of Bcl-2 against virus-induced apoptosis. Moreover, a murine Bcl-2 mutant having Asp31, Asp34 and Asp36 substituted by Glu was resistant to proteolytic cleavage and abrogated apoptosis following virus infection. These findings indicate that alphaviruses can trigger a caspase-mediated inactivation of Bcl-2 in order to evade the death protection imposed by this survival factor.
Resumo:
Both of the sphingosine kinase (SK) subtypes SK-1 and SK-2 catalyze the production of the bioactive lipid molecule sphingosine 1-phosphate (S1P). However, the subtype-specific cellular functions are largely unknown. In this study, we investigated the cellular function of SK-2 in primary mouse renal mesangial cells (mMC) and embryonic fibroblasts (MEF) from wild-type C57BL/6 or SK-2 knockout (SK2ko) mice. We found that SK2ko cells displayed a significantly higher proliferative and migratory activity when compared to wild-type cells, with concomitant increased cellular activities of the classical extracellular signal regulated kinase (ERK) and PI3K/Akt cascades, and of the small G protein RhoA. Furthermore, we detected an upregulation of SK-1 protein and S1P3 receptor mRNA expression in SK-2ko cells. The MEK inhibitor U0126 and the S1P1/3 receptor antagonist VPC23019 blocked the increased migration of SK-2ko cells. Additionally, S1P3ko mesangial cells showed a reduced proliferative behavior and reduced migration rate upon S1P stimulation, suggesting a crucial involvement of the S1P3 receptor. In summary, our data demonstrate that SK-2 exerts suppressive effects on cell growth and migration in renal mesangial cells and fibroblasts, and that therapeutic targeting of SKs for treating proliferative diseases requires subtype-selective inhibitors.
Resumo:
Transforming growth factor β2 (TGF-β2) is well known to stimulate the expression of pro-fibrotic connective tissue growth factor (CTGF) in several cell types including human mesangial cells. The present study demonstrates that TGF-β2 enhances sphingosine 1-phosphate receptor 5 (S1P5) mRNA and protein expression in a time and concentration dependent manner. Pharmacological and siRNA approaches reveal that this upregulation is mediated via activation of classical TGF-β downstream effectors, Smad and mitogen-activated protein kinases. Most notably, inhibition of Gi with pertussis toxin and downregulation of S1P5 by siRNA block TGF-β2-stimulated upregulation of CTGF, demonstrating that Gi coupled S1P5 is necessary for TGF-β2-triggered expression of CTGF in human mesangial cells. Overall, these findings indicate that TGF-β2 dependent upregulation of S1P5 is required for the induction of pro-fibrotic CTGF by TGF-β. Targeting S1P5 might be an attractive novel approach to treat renal fibrotic diseases.
Resumo:
The beta 2 subunit of the interleukin (IL)-12 receptor (IL-12R beta 2) has been shown to play an essential role in differentiation of T helper 1 (Th1) cells in the murine and human system, and antibodies raised against IL-12R beta 2 recognized this molecule on human Th1 but not Th2 cells. However, while the cytokines secreted by clones of murine cells allowed the definition of distinct T helper cell subsets, bovine clones with polarized Th1 and Th2 cytokine profiles were rarely found. This raised important questions about the regulation of immune responses in cattle. We therefore cloned bovine IL-12R beta2 (boIL-12R beta 2) DNA complementary to RNA (cDNA) from the start codon to the 3' end of the mRNA. Comparison of boIL-12R beta 2 cDNA with human and murine IL-12R beta 2 cDNA sequences revealed homologies of 85 and 78%, respectively. The deduced protein sequence showed the hallmark motifs of the cytokine receptor superfamily including the four conserved cysteine residues, the WSXWS motif and fibronectin domains in the extracellular part as well as a STAT4 binding site in the intracellular part of the molecule. Using real-time reverse transcription-polymerase chain reaction, upregulation of mRNA expression of this molecule could be demonstrated in cultured bovine lymph node cells stimulated with phytohemagglutinin. Furthermore, cells with upregulated boIL-12R beta 2 mRNA responded with enhanced expression of interferon gamma to treatment with interleukin 12.