73 resultados para Computer application
Resumo:
OBJECTIVE To analyze the precision of fit of implant-supported screw-retained computer-aided-designed and computer-aided-manufactured (CAD/CAM) zirconium dioxide (ZrO) frameworks. MATERIALS AND METHODS Computer-aided-designed and computer-aided-manufactured ZrO frameworks (NobelProcera) for a screw-retained 10-unit implant-supported reconstruction on six implants (FDI positions 15, 13, 11, 21, 23, 25) were fabricated using a laser (ZrO-L, N = 6) and a mechanical scanner (ZrO-M, N = 5) for digitizing the implant platform and the cuspid-supporting framework resin pattern. Laser-scanned CAD/CAM titanium (TIT-L, N = 6) and cast CoCrW-alloy frameworks (Cast, N = 5) fabricated on the same model and designed similar to the ZrO frameworks were the control. The one-screw test (implant 25 screw-retained) was applied to assess the vertical microgap between implant and framework platform with a scanning electron microscope. The mean microgap was calculated from approximal and buccal values. Statistical comparison was performed with non-parametric tests. RESULTS No statistically significant pairwise difference was observed between the relative effects of vertical microgap between ZrO-L (median 14 μm; 95% CI 10-26 μm), ZrO-M (18 μm; 12-27 μm) and TIT-L (15 μm; 6-18 μm), whereas the values of Cast (236 μm; 181-301 μm) were significantly higher (P < 0.001) than the three CAD/CAM groups. A monotonous trend of increasing values from implant 23 to 15 was observed in all groups (ZrO-L, ZrO-M and Cast P < 0.001, TIT-L P = 0.044). CONCLUSIONS Optical and tactile scanners with CAD/CAM technology allow for the fabrication of highly accurate long-span screw-retained ZrO implant-reconstructions. Titanium frameworks showed the most consistent precision. Fit of the cast alloy frameworks was clinically inacceptable.
Resumo:
N. Bostrom’s simulation argument and two additional assumptions imply that we are likely to live in a computer simulation. The argument is based upon the following assumption about the workings of realistic brain simulations: The hardware of a computer on which a brain simulation is run bears a close analogy to the brain itself. To inquire whether this is so, I analyze how computer simulations trace processes in their targets. I describe simulations as fictional, mathematical, pictorial, and material models. Even though the computer hardware does provide a material model of the target, this does not suffice to underwrite the simulation argument because the ways in which parts of the computer hardware interact during simulations do not resemble the ways in which neurons interact in the brain. Further, there are computer simulations of all kinds of systems, and it would be unreasonable to infer that some computers display consciousness just because they simulate brains rather than, say, galaxies.
Resumo:
For patients with extensive bilobar colorectal liver metastases (CRLM), initial surgery may not be feasible and a multimodal approach including microwave ablation (MWA) provides the only chance for prolonged survival. Intraoperative navigation systems may improve the accuracy of ablation and surgical resection of so-called "vanishing lesions", ultimately improving patient outcome. Clinical application of intraoperative navigated liver surgery is illustrated in a patient undergoing combined resection/MWA for multiple, synchronous, bilobar CRLM. Regular follow-up with computed tomography (CT) allowed for temporal development of the ablation zones. Of the ten lesions detected in a preoperative CT scan, the largest lesion was resected and the others were ablated using an intraoperative navigation system. Twelve months post-surgery a new lesion (Seg IVa) was detected and treated by trans-arterial embolization. Nineteen months post-surgery new liver and lung metastases were detected and a palliative chemotherapy started. The patient passed away four years after initial diagnosis. For patients with extensive CRLM not treatable by standard surgery, navigated MWA/resection may provide excellent tumor control, improving longer-term survival. Intraoperative navigation systems provide precise, real-time information to the surgeon, aiding the decision-making process and substantially improving the accuracy of both ablation and resection. Regular follow-ups including 3D modeling allow for early discrimination between ablation zones and recurrent tumor lesions.
Resumo:
One-dimensional dynamic computer simulation was employed to investigate the separation and migration order change of ketoconazole enantiomers at low pH in presence of increasing amounts of (2-hydroxypropyl)-β-cyclodextrin (OHP-β-CD). The 1:1 interaction of ketoconazole with the neutral cyclodextrin was simulated under real experimental conditions and by varying input parameters for complex mobilities and complexation constants. Simulation results obtained with experimentally determined apparent ionic mobilities, complex mobilities, and complexation constants were found to compare well with the calculated separation selectivity and experimental data. Simulation data revealed that the migration order of the ketoconazole enantiomers at low (OHP-β-CD) concentrations (i.e. below migration order inversion) is essentially determined by the difference in complexation constants and at high (OHP-β-CD) concentrations (i.e. above migration order inversion) by the difference in complex mobilities. Furthermore, simulations with complex mobilities set to zero provided data that mimic migration order and separation with the chiral selector being immobilized. For the studied CEC configuration, no migration order inversion is predicted and separations are shown to be quicker and electrophoretic transport reduced in comparison to migration in free solution. The presented data illustrate that dynamic computer simulation is a valuable tool to study electrokinetic migration and separations of enantiomers in presence of a complexing agent.
Resumo:
Femoroacetabular impingement (FAI) before or after Periacetabular Osteotomy (PAO) is surprisingly frequent and surgeons need to be aware of the risk preoperatively and be able to avoid it intraoperatively. In this paper we present a novel computer assisted planning and navigation system for PAO with impingement analysis and range of motion (ROM) optimization. Our system starts with a fully automatic detection of the acetabular rim, which allows for quantifying the acetabular morphology with parameters such as acetabular version, inclination and femoral head coverage ratio for a computer assisted diagnosis and planning. The planned situation was optimized with impingement simulation by balancing acetabuar coverage with ROM. Intra-operatively navigation was conducted until the optimized planning situation was achieved. Our experimental results demonstrated: 1) The fully automated acetabular rim detection was validated with accuracy 1.1 ± 0.7mm; 2) The optimized PAO planning improved ROM significantly compared to that without ROM optimization; 3) By comparing the pre-operatively planned situation and the intra-operatively achieved situation, sub-degree accuracy was achieved for all directions.
Resumo:
One of the most promising applications for the restoration of small or moderately sized focal articular lesions is mosaicplasty (MP). Although recurrent hemarthrosis is a rare complication after MP, recently, various strategies have been designed to find an effective filling material to prevent postoperative bleeding from the donor site. The porous biodegradable polymer Polyactive (PA; a polyethylene glycol terephthalate - polybutylene terephthalate copolymer) represents a promising solution in this respect. A histological evaluation of the longterm PA-filled donor sites obtained from 10 experimental horses was performed. In this study, attention was primarily focused on the bone tissue developed in the plug. A computer-assisted image analysis and quantitative polarized light microscopic measurements of decalcified, longitudinally sectioned, dimethylmethylene blue (DMMB)- and picrosirius red (PS) stained sections revealed that the coverage area of the bone trabecules in the PA-filled donor tunnels was substantially (25%) enlarged compared to the neighboring cancellous bone. For this quantification, identical ROIs (regions of interest) were used and compared. The birefringence retardation values were also measured with a polarized light microscope using monochromatic light. Identical retardation values could be recorded from the bone trabeculae developed in the PA and in the neighboring bone, which indicates that the collagen orientation pattern does not differ significantly among these bone trabecules. Based on our new data, we speculate that PA promotes bone formation, and some of the currently identified degradation products of PA may enhance osteo-conduction and osteoinduction inside the donor canal.
Resumo:
Extraction of both pelvic and femoral surface models of a hip joint from CT data for computer-assisted pre-operative planning of hip arthroscopy is addressed. We present a method for a fully automatic image segmentation of a hip joint. Our method works by combining fast random forest (RF) regression based landmark detection, atlas-based segmentation, with articulated statistical shape model (aSSM) based hip joint reconstruction. The two fundamental contributions of our method are: (1) An improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the atlas-based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Validation on 30 hip CT images show that our method achieves high performance in segmenting pelvis, left proximal femur, and right proximal femur surfaces with an average accuracy of 0.59 mm, 0.62 mm, and 0.58 mm, respectively.
Resumo:
Background: Individuals with type 1 diabetes (T1D) have to count the carbohydrates (CHOs) of their meal to estimate the prandial insulin dose needed to compensate for the meal’s effect on blood glucose levels. CHO counting is very challenging but also crucial, since an error of 20 grams can substantially impair postprandial control. Method: The GoCARB system is a smartphone application designed to support T1D patients with CHO counting of nonpacked foods. In a typical scenario, the user places a reference card next to the dish and acquires 2 images with his/her smartphone. From these images, the plate is detected and the different food items on the plate are automatically segmented and recognized, while their 3D shape is reconstructed. Finally, the food volumes are calculated and the CHO content is estimated by combining the previous results and using the USDA nutritional database. Results: To evaluate the proposed system, a set of 24 multi-food dishes was used. For each dish, 3 pairs of images were taken and for each pair, the system was applied 4 times. The mean absolute percentage error in CHO estimation was 10 ± 12%, which led to a mean absolute error of 6 ± 8 CHO grams for normal-sized dishes. Conclusion: The laboratory experiments demonstrated the feasibility of the GoCARB prototype system since the error was below the initial goal of 20 grams. However, further improvements and evaluation are needed prior launching a system able to meet the inter- and intracultural eating habits.
Resumo:
Two of the main issues in wireless industrial Internet of Things applications are interoperability and network lifetime. In this work we extend a semantic interoperability platform and introduce an application-layer sleepy nodes protocol that can leverage on information stored in semantic repositories. We propose an integration platform for managing the sleep states and an application layer protocol based upon the Constraint Application Layer protocol. We evaluate our system on windowing based task allocation strategies, aiming for lower overall energy consumption that results in higher network lifetime.
Resumo:
Population growth is always increasing, and thus the concept of smart and cognitive cities is becoming more important. Developed countries are aware of and working towards needed changes in city management. However, emerging countries require the optimization of their own city management. This chapter illustrates, based on a use case, how a city in an emerging country can quickly progress using the concept of smart and cognitive cities. Nairobi, the capital of Kenya, is chosen for the test case. More than half of the population of Nairobi lives in slums with poor sanitation, and many slum inhabitants often share a single toilet, so the proper functioning and reliable maintenance of toilets are crucial. For this purpose, an approach for processing text messages based on cognitive computing (using soft computing methods) is introduced. Slum inhabitants can inform the responsible center via text messages in cases when toilets are not functioning properly. Through cognitive computer systems, the responsible center can fix the problem in a quick and efficient way by sending repair workers to the area. Focusing on the slum of Kibera, an easy-to-handle approach for slum inhabitants is presented, which can make the city more efficient, sustainable and resilient (i.e., cognitive).