56 resultados para Compound muscle action potential


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical injury of the CNS frequently results from accidents but also occurs in the course of neurosurgical interventions. A great variety of anatomical and physiological changes have been described to evolve after a brain trauma yet only little is known about processes that occur during a trauma. In the present study, I obtained whole-cell patch clamp recordings from pyramidal cells in hippocampal slice cultures while mechanically lesioning the CA3 area. Electrophysiological analysis revealed that traumatic injury massively increased excitatory and inhibitory synaptic activity in the entire CA3 region. Cutting the CA3 region induced highly rhythmic excitatory postsynaptic currents (EPSCs) that reached frequencies of around 70 Hz. Blocking voltage-dependent sodium channels with tetrodotoxin prevented the increase in synaptic activity and injury-induced neurotransmitter release in CA3 remote from the lesion site. With fast synaptic transmission blocked only neurons in the immediate vicinity of a lesion depolarized and fired action potentials upon mechanical damage. I hence suggest that mechanical injury damages the membrane and induces action potential firing in only a small population of neurons. This activity is then propagated throughout the undamaged CA3 network inducing highly rhythmic discharges. Thus mechanical brain injury initiates immediate functional changes that exceed the lesion site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Advancement of the greater trochanter alters the function of the gluteus medius muscle. However, with the exception of clinical studies and biomechanical lever arm studies, no publications that analyze the consequences of advancement of the greater trochanter on the muscle function exist. The aim of the study was to analyze the mechanical changes of gluteus medius after osteotomy of the greater trochanter in a lab setting. METHODS An anatomical study of origin and insertion of the gluteus medius was carried out on four hips. Based on the dissections, a string model was developed dividing the muscle into five sectors. Changes in muscle fiber length were measured for every 10° of flexion, internal and external rotation and abduction with the trochanter in anatomic, proximalized and distalized positions. RESULTS Distalization of the trochanter leads to an imbalance of muscle action, moving the isometric sector of the muscle anteriorly with more muscle sectors being active during flexion and less during extension. Stretching of the muscle increases passive forces but decreases the force generation capacity of the muscle and at the same time increased muscle fiber excursion may require more energy consumption, which may explain earlier fatigue of the abductor musculature after distalization of the trochanter. For abduction, distalization of the muscle attachment leads to a change in contraction pattern from isometric to isotonic. Optimal balancing and excursion of the muscle is when the tip of the greater trochanter is at level with the hip rotation center. CONCLUSIONS In hips with high riding trochanter, the optimal position is at the level of the center of hip rotation. Excessive distalization should be avoided. As the conclusions and considerations are based on a lab setting, transfer to clinical practice may not necessarily apply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The movement of ions across specific channels embedded on the membrane of individual cardiomyocytes is crucial for the generation and propagation of the cardiac electric impulse. Emerging evidence over the past 20 years strongly suggests that the normal electric function of the heart is the result of dynamic interactions of membrane ion channels working in an orchestrated fashion as part of complex molecular networks. Such networks work together with exquisite temporal precision to generate each action potential and contraction. Macromolecular complexes play crucial roles in transcription, translation, oligomerization, trafficking, membrane retention, glycosylation, post-translational modification, turnover, function, and degradation of all cardiac ion channels known to date. In addition, the accurate timing of each cardiac beat and contraction demands, a comparable precision on the assembly and organizations of sodium, calcium, and potassium channel complexes within specific subcellular microdomains, where physical proximity allows for prompt and efficient interaction. This review article, part of the Compendium on Sudden Cardiac Death, discusses the major issues related to the role of ion channel macromolecular assemblies in normal cardiac electric function and the mechanisms of arrhythmias leading to sudden cardiac death. It provides an idea of how these issues are being addressed in the laboratory and in the clinic, which important questions remain unanswered, and what future research will be needed to improve knowledge and advance therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage-gated sodium channels (Nav) are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the Nav. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the Nav by shifting the voltage-dependence of steady state activation toward more negative potentials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cardiac voltage-gated Na(+) channel, Na(V)1.5, is responsible for the upstroke of the action potential in cardiomyocytes and for efficient propagation of the electrical impulse in the myocardium. Even subtle alterations of Na(V)1.5 function, as caused by mutations in its gene SCN5A, may lead to many different arrhythmic phenotypes in carrier patients. In addition, acquired malfunctions of Na(V)1.5 that are secondary to cardiac disorders such as heart failure and cardiomyopathies, may also play significant roles in arrhythmogenesis. While it is clear that the regulation of Na(V)1.5 protein expression and function tightly depends on genetic mechanisms, recent studies have demonstrated that Na(V)1.5 is the target of various post-translational modifications that are pivotal not only in physiological conditions, but also in disease. In this review, we examine the recent literature demonstrating glycosylation, phosphorylation by Protein Kinases A and C, Ca(2+)/Calmodulin-dependent protein Kinase II, Phosphatidylinositol 3-Kinase, Serum- and Glucocorticoid-inducible Kinases, Fyn and Adenosine Monophosphate-activated Protein Kinase, methylation, acetylation, redox modifications, and ubiquitylation of Na(V)1.5. Modern and sensitive mass spectrometry approaches, applied directly to channel proteins that were purified from native cardiac tissues, have enabled the determination of the precise location of post-translational modification sites, thus providing essential information for understanding the mechanistic details of these regulations. The current challenge is first, to understand the roles of these modifications on the expression and the function of Na(V)1.5, and second, to further identify other chemical modifications. It is postulated that the diversity of phenotypes observed with Na(V)1.5-dependent disorders may partially arise from the complex post-translational modifications of channel protein components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein proposed to function in various RNA metabolic pathways, including transcription regulation, pre-mRNA splicing, RNA transport and microRNA processing. Mutations in the FUS gene were identified in patients with amyotrophic lateral sclerosis (ALS), but the pathomechanisms by which these mutations cause ALS are not known. Here, we show that FUS interacts with the minor spliceosome constituent U11 snRNP, binds preferentially to minor introns and directly regulates their removal. Furthermore, a FUS knockout in neuroblastoma cells strongly disturbs the splicing of minor intron-containing mRNAs, among them mRNAs required for action potential transmission and for functional spinal motor units. Moreover, an ALS-associated FUS mutant that forms cytoplasmic aggregates inhibits splicing of minor introns by trapping U11 and U12 snRNAs in these aggregates. Collectively, our findings suggest a possible pathomechanism for ALS in which mutated FUS inhibits correct splicing of minor introns in mRNAs encoding proteins required for motor neuron survival.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we report a novel steroid-like compound F90363, exhibiting positive inotropy in vivo and in vitro in various cardiac muscle preparations. F90363 is a racemic mixture composed of the stereoisomers (-)-F90926 and (+)-F90927. Only F90927 exerted positive inotropy, while F90926 induced a weak negative inotropy, but only at concentrations 10(3) times higher than F90927 and most likely resulting from an unspecific interaction. The rapid time course of the action of F90927 suggested a direct interaction with a cellular target rather than a genomic alteration. We could identify the L-type Ca2+ current I(Ca(L)) as a main target of F90927, while excluding other components of cardiac Ca2+ signalling as potential contributors. In addition, several other signaling pathways known to lead to positive inotropy (e.g. alpha- and beta-adrenergic stimulation, cAMP pathways) could be excluded as targets of F90927. However, vessel contraction and stiffening of the cardiac muscle at high doses (>30 microM, 0.36 mg kg(-1), respectively) prevent the use of F90927 as a candidate for drug development. Since the compound may still find valuable applications in research, the aim of the present study was to identify the cellular target and the mechanism of inotropy of F90927.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are key receptors of the innate immune system which are expressed on immune and nonimmune cells. They are activated by both pathogen-associated molecular patterns and endogenous ligands. Activation of TLRs culminates in the release of proinflammatory cytokines, chemokines, and apoptosis. Ischaemia and ischaemia/reperfusion (I/R) injury are associated with significant inflammation and tissue damage. There is emerging evidence to suggest that TLRs are involved in mediating ischaemia-induced damage in several organs. Critical limb ischaemia (CLI) is the most severe form of peripheral arterial disease (PAD) and is associated with skeletal muscle damage and tissue loss; however its pathophysiology is poorly understood. This paper will underline the evidence implicating TLRs in the pathophysiology of cerebral, renal, hepatic, myocardial, and skeletal muscle ischaemia and I/R injury and discuss preliminary data that alludes to the potential role of TLRs in the pathophysiology of skeletal muscle damage in CLI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glucocorticoids play an essential role in the regulation of key physiological processes, including immunomodulation, brain function, energy metabolism, electrolyte balance and blood pressure. Exposure to naturally occurring compounds or industrial chemicals that impair glucocorticoid action may contribute to the increasing incidence of cognitive deficits, immune disorders and metabolic diseases. Potentially, "glucocorticoid disruptors" can interfere with various steps of hormone action, e.g. hormone synthesis, binding to plasma proteins, delivery to target cells, pre-receptor regulation of the ratio of active versus inactive hormones, glucocorticoid receptor (GR) function, or export and degradation of glucocorticoids. Several recent studies indicate that such chemicals exist and that some of them can cause multiple toxic effects by interfering with different steps of hormone action. For example, increasing evidence suggests that organotins disturb glucocorticoid action by altering the function of factors that regulate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) pre-receptor enzymes, by direct inhibition of 11beta-HSD2-dependent inactivation of glucocorticoids, and by blocking GR activation. These observations emphasize on the complexity of the toxic effects caused by such compounds and on the need of suitable test systems to assess their effects on each relevant step.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.