67 resultados para Competitive exclusion
Resumo:
The capabilities of postmodern biotechnology inevitably lead to questioning if it is morally acceptable to use all possibilities offered by technology. In sport, this very complex issue is dealt with by drawing clear boundaries between naturalness and artificiality. Currently, new biotechnology is constantly being produced and with this, boundaries between naturalness and artificiality, between normal and abnormal, human and hybrid are constantly shifting . “Human enhancement” is a fascinating prism that reflects contemporary questions of participation, justice, equality and the autonomy of the subject in all social fields. The area of elite sports is particularly affected by “human enhancement”, according to the principle of exceeding what has come before, of aiming higher, faster and further. This paper analyses the postulated “naturalness” in the regulative and normalising function in the area of elite sports, in connection with Foucault’s theory of governmentality. The example of the South African sprinter Oscar Pistorius appears to be particularly suited to illustrate current definition difficulties in the area of disabled and non-disabled people in differentiated competitive sports. His is a vivid example of a multifaceted body-sociological analysis of current sport culture and the construction of reality or naturalness in the framework of the discourse of drafting and negotiating the accreditation for sprint competitions of non-disabled athletes, most recently in the London Olympics 2012. Using the case study of Oscar Pistorius, the negotiating processes in relation to the argumentation logic, dynamics and resistance in shifting distinctions are presented in detail using the fundamental documents of the IOC, IPC, CAS and IAAF. Represented through the inclusion and exclusion processes are hierarchies of the body that are (re)consolidated and transformed. The central question emerges as to how the worth of equal opportunity and fairness in regard to “naturalness” can be reconsolidated or transformed.
Resumo:
Children and adolescents with hearing impairments are at risk of being excluded from activities with hearing peers. Moral emotion attributions may represent important indicators for children’s identification with the moral norm not to exclude peers based on disability. Against this background, we investigated how 10-, 12- and 15-year-olds (N = 215) feel and judge about social exclusion of peers with hearing impairments. Emotion attributions and moral judgements were assessed using four different hypothetical scenarios about the exclusion of peers with hearing impairments (school vs. leisure time, group vs. dyad). Moreover, children’s and adolescents’ inclusive behaviour was assessed by a peer nomination procedure. Results revealed that moral emotion attributions differed as a function of exclusion context and grade. Moreover, participants with inclusive behaviour attributed moral emotions more often than participants with less inclusive behaviour. Implications of the results for moral education are discussed.
Resumo:
Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase ( PDC) and alcohol dehydrogenase ( ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen- specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild- type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen- specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen - pistil interaction.
Resumo:
Ovine foot rot caused by Dichelobacter nodosus is affecting sheep worldwide. The current diagnostic methods are difficult and cumbersome. Here, we present a competitive real-time PCR based on allelic discrimination of the protease genes aprV2 and aprB2. This method allows direct detection and differentiation of virulent and benign D. nodosus from interdigital skin swabs in a single test. Clinically affected sheep harbored high loads of only virulent strains, whereas healthy sheep had lower loads of predominantly benign strains.
Resumo:
Positive-stranded viruses synthesize their RNA in membrane-bound organelles, but it is not clear how this benefits the virus or the host. For coronaviruses, these organelles take the form of double-membrane vesicles (DMVs) interconnected by a convoluted membrane network. We used electron microscopy to identify murine coronaviruses with mutations in nsp3 and nsp14 that replicated normally while producing only half the normal amount of DMVs under low-temperature growth conditions. Viruses with mutations in nsp5 and nsp16 produced small DMVs but also replicated normally. Quantitative reverse transcriptase PCR (RT-PCR) confirmed that the most strongly affected of these, the nsp3 mutant, produced more viral RNA than wild-type virus. Competitive growth assays were carried out in both continuous and primary cells to better understand the contribution of DMVs to viral fitness. Surprisingly, several viruses that produced fewer or smaller DMVs showed a higher fitness than wild-type virus at the reduced temperature, suggesting that larger and more numerous DMVs do not necessarily confer a competitive advantage in primary or continuous cell culture. For the first time, this directly demonstrates that replication and organelle formation may be, at least in part, studied separately during infection with positive-stranded RNA virus. IMPORTANCE The viruses that cause severe acute respiratory syndrome (SARS), poliomyelitis, and hepatitis C all replicate in double-membrane vesicles (DMVs). The big question about DMVs is why they exist in the first place. In this study, we looked at thousands of infected cells and identified two coronavirus mutants that made half as many organelles as normal and two others that made typical numbers but smaller organelles. Despite differences in DMV size and number, all four mutants replicated as efficiently as wild-type virus. To better understand the relative importance of replicative organelles, we carried out competitive fitness experiments. None of these viruses was found to be significantly less fit than wild-type, and two were actually fitter in tests in two kinds of cells. This suggests that viruses have evolved to have tremendous plasticity in the ability to form membrane-associated replication complexes and that large and numerous DMVs are not exclusively associated with efficient coronavirus replication.
Resumo:
BACKGROUND Due to the implementation of the diagnosis-related groups (DRG) system, the competitive pressure on German hospitals increased. In this context it has been shown that acute pain management offers economic benefits for hospitals. The aim of this study was to analyze the impact of the competitive situation, the ownership and the economic resources required on structures and processes for acute pain management. MATERIAL AND METHODS A standardized questionnaire on structures and processes of acute pain management was mailed to the 885 directors of German departments of anesthesiology listed as members of the German Society of Anesthesiology and Intensive Care Medicine (DGAI, Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin). RESULTS For most hospitals a strong regional competition existed; however, this parameter affected neither the implementation of structures nor the recommended treatment processes for pain therapy. In contrast, a clear preference for hospitals in private ownership to use the benchmarking tool QUIPS (quality improvement in postoperative pain therapy) was found. These hospitals also presented information on coping with the management of pain in the corporate clinic mission statement more often and published information about the quality of acute pain management in the quality reports more frequently. No differences were found between hospitals with different forms of ownership in the implementation of acute pain services, quality circles, expert standard pain management and the implementation of recommended processes. Hospitals with a higher case mix index (CMI) had a certified acute pain management more often. The corporate mission statement of these hospitals also contained information on how to cope with pain, presentation of the quality of pain management in the quality report, implementation of quality circles and the implementation of the expert standard pain management more frequently. There were no differences in the frequency of using the benchmarking tool QUIPS or the implementation of recommended treatment processes with respect to the CMI. CONCLUSION In this survey no effect of the competitive situation of hospitals on acute pain management could be demonstrated. Private ownership and a higher CMI were more often associated with structures of acute pain management which were publicly accessible in terms of hospital marketing.
Resumo:
We tested the prediction from spatial competition models that intraspecific aggregation may promote coexistence and thus maintain biodiversity with experimental communities of four annual species. Monocultures, three-species mixtures, and the four-species mixture were sown at two densities and with either random or intraspecifically aggregated distributions. There was a hierarchy of competitive abilities among the four species. The weaker competitors showed higher aboveground biomass in the aggregated distribution compared to the random distribution, especially at high density. In one species, intraspecific aggregation resulted in an 86% increase in the number of flowering individuals and a 171% increase in the reproductive biomass at high density. The competitively superior species had a lower biomass in the aggregated distribution than in the random distribution at high density. The data support the hypothesis that the spatial distribution of plants profoundly affects competition in such a way that weaker competitors increase their fitness while stronger competitors are suppressed when grown in the neighborhood of conspecifics. This implies that the spatial arrangement of plants in a community can be an important determinant of species coexistence and biodiversity.
Resumo:
Divalent metal transporter-1 (SLC11A2/DMT1) uses the H+ electrochemical gradient as the driving force to transport divalent metal ions such as Fe2+, Mn2+ and others metals into mammalian cells. DMT1 is ubiquitously expressed, most notably in proximal duodenum, immature erythroid cells, brain and kidney. This transporter mediates H+-coupled transport of ferrous iron across the apical membrane of enterocytes. In addition, in cells such as to erythroid precursors, following transferrin receptor (TfR) mediated endocytosis; it mediates H+-coupled exit of ferrous iron from endocytic vesicles into the cytosol. Dysfunction of human DMT1 is associated with several pathologies such as iron deficiency anemia hemochromatosis, Parkinson's disease and Alzheimer's disease, as well as colorectal cancer and esophageal adenocarcinoma, making DMT1 an attractive target for drug discovery. In the present study, we performed a ligand-based virtual screening of the Princeton database (700,000 commercially available compounds) to search for pharmacophore shape analogs of recently reported DMT1 inhibitors. We discovered a new compound, named pyrimidinone 8, which mediates a reversible linear non-competitive inhibition of human DMT1 (hDMT1) transport activity with a Ki of ∼20 μM. This compound does not affect hDMT1 cell surface expression and shows no dependence on extracellular pH. To our knowledge, this is the first experimental evidence that hDMT1 can be allosterically modulated by pharmacological agents. Pyrimidinone 8 represents a novel versatile tool compound and it may serve as a lead structure for the development of therapeutic compounds for pre-clinical assessment.
Resumo:
Transcatheter mitral interventions has been developed to address an unmet clinical need and may be an alternative therapeutic option to surgery with the intent to provide symptomatic and prognostic benefit. Beyond MitraClip therapy, alternative repair technologies are being developed to expand the transcatheter intervention armamentarium. Recently, the feasibility of transcatheter mitral valve implantation in native non-calcified valves has been reported in very high-risk patients. Acknowledging the lack of scientific evidence to date, it is difficult to predict what the ultimate future role of transcatheter mitral valve interventions will be. The purpose of the present report is to review the current state-of-the-art of mitral valve intervention, and to identify the potential future scenarios, which might benefit most from the transcatheter repair and replacement devices under development.