67 resultados para Coinciding Objects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supramolecular DNA assembly blends DNA building blocks with synthetic organic and inorganic molecules giving structural and functional advantages both to the initial self-assembly process and to the final construct. Synthetic molecules can bring a number of additional interactions into DNA nanotechnology. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π-π stacking (DNA “foldamers”). In previous work it was shown that short oligopyrenotides (phosphodiester-linked pyrene oligomers) behave as staircase-like foldamers, which cooperatively self-assemble into two-dimensional supramolecular polymers in aqueous medium. Herein, we demonstrate that a 10-mer DNA-sequence modified with 7 pyrene units (see illustration) forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphological studies, and the spectroscopic properties of the investigated DNA-sequences (illustrative AFM picture shown below).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supramolecular DNA assembly blends DNA building blocks with synthetic organic molecules giving structural and functional advantages. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π-π stacking (DNA 'foldamers'). In previous work it was shown that short oligopyrenotides behave as staircase-like foldamers, which cooperatively self-assemble into 2D supramolecular polymers in aqueous medium. Herein, we demonstrate that 10-mer DNA-sequence conjugated with seven pyrene unites forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphologycal studies (AFM and TEM), and the spectroscopic properties (UV/vis, CD) of the investigated pyrene - conjugated DNA-sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement association and initial orbit determination is a fundamental task when building up a database of space objects. This paper proposes an efficient and robust method to determine the orbit using the available information of two tracklets, i.e. their line-of-sights and their derivatives. The approach works with a boundary-value formulation to represent hypothesized orbital states and uses an optimization scheme to find the best fitting orbits. The method is assessed and compared to an initial-value formulation using a measurement set taken by the Zimmerwald Small Aperture Robotic Telescope of the Astronomical Institute at the University of Bern. False associations of closely spaced objects on similar orbits cannot be completely eliminated due to the short duration of the measurement arcs. However, the presented approach uses the available information optimally and the overall association performance and robustness is very promising. The boundary-value optimization takes only around 2% of computational time when compared to optimization approaches using an initial-value formulation. The full potential of the method in terms of run-time is additionally illustrated by comparing it to other published association methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the results from the coverage and the orbit determination accuracy simulations performed within the recently completed ESA study “Assessment Study for Space Based Space Surveillance (SBSS) Demonstration System” (Airbus Defence and Space consortium). This study consisted in investigating the capability of a space based optical sensor (SBSS) orbiting in low Earth orbit (LEO) to detect and track objects in GEO (geosynchronous orbit), MEO (medium Earth orbit) and LEO and to determinate and improve initial orbits from such observations. Space based systems may achieve better observation conditions than ground based sensors in terms of astrometric accuracy, detection coverage, and timeliness. The primary observation mode of the proposed SBSS demonstrator is GEO surveillance, i.e. the systematic search and detection of unknown and known objects. GEO orbits are specific and unique orbits from dynamical point of view. A space-based sensor may scan the whole GEO ring within one sidereal day if the orbit and pointing directions are chosen properly. For an efficient survey, our goal was to develop a leak-proof GEO fence strategy. Collaterally, we show that also MEO, LEO and other (GTO,Molniya, etc.) objects would be possible to observe by the system and for a considerable number of LEO objects to down to size of 1 cm we can obtain meaningful statistical data for improvement and validation of space debris environment models

Relevância:

20.00% 20.00%

Publicador:

Resumo:

addplot adds twoway plot objects to an existing twoway graph. This is useful if you want to add additional objects such as titles or extra data points to a twoway graph after it has been created. Most of what addplot can do, can also be done by rerunning the original graph command including additional options or plot statements. addplot, however, might be useful if you have to modify a graph for which you cannot rerun the original command, for example, because you only have the graph file but not the data that were used to create the graph. Furthermore, addplot can do certain things that would be difficult to achieve in a single graph command (e.g. customizing individual subgraphs within a by-graph). addplot also provides a substitute for some of the functionality of the graph editor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research suggests that great apes are less vulnerable to cohesion violations than human infants are. In contrast to human infants, apes successfully track nonsolid substances or split solid objects through occlusion (Cacchione & Call, 2010a; Cacchione, Hrubesch, & Call, 2012, 2013). The present study aims to investigate whether the lower vulnerability of great apes to cohesion violations also manifests when they are tracking collections. While even very young human infants appreciate the continuous existence of solid bound objects, they fail to show similar intuitions when tracking collections of objects (Chiang & Wynn, 2000). In a manual search task inspired by recent infant research, we tested whether humans’ closest relatives, the great apes, showed a similar contrast in their reasoning about single solid objects and objects within collections. The results suggest that, in contrast to human infants, great apes appreciate the continuous existence of objects within collections and successfully track them through occlusion. This confirms the view that great apes are generally less vulnerable to cohesion violations than human infants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous research has demonstrated that adults are successful at visually tracking rigidly moving items, but experience great difficulties when tracking substance-like ‘‘pouring’’ items. Using a comparative approach, we investigated whether the presence/absence of the grammatical count–mass distinction influences adults and children’s ability to attentively track objects versus substances. More specifically, we aimed to explore whether the higher success at tracking rigid over substance-like items appears universally or whether speakers of classifier languages (like Japanese, not marking the object–substance distinction) are advantaged at tracking substances as compared to speakers of non-classifier languages (like Swiss German, marking the object–substance distinction). Our results supported the idea that language has no effect on low-level cognitive processes such as the attentive visual processing of objects and substances. We concluded arguing that the tendency to prioritize objects is universal and independent of specific characteristics of the language spoken.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Stata, graphs are usually generated by one call to the graph command. Sometimes, however, it would be convenient to be able to add objects to a graph after the graph has been created. In this article, I provide a command called addplot that offers such functionality for twoway graphs, capitalizing on an undocumented feature of Stata's graphics system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cataloging geocentric objects can be put in the framework of Multiple Target Tracking (MTT). Current work tends to focus on the S = 2 MTT problem because of its favorable computational complexity of O(n²). The MTT problem becomes NP-hard for a dimension of S˃3. The challenge is to find an approximation to the solution within a reasonable computation time. To effciently approximate this solution a Genetic Algorithm is used. The algorithm is applied to a simulated test case. These results represent the first steps towards a method that can treat the S˃3 problem effciently and with minimal manual intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). In this context both, the correct associations among the observations and the orbits of the objects have to be determined. The complexity of the MTT problem is defined by its dimension S. The number S corresponds to the number of fences involved in the problem. Each fence consists of a set of observations where each observation belongs to a different object. The S ≥ 3 MTT problem is an NP-hard combinatorial optimization problem. There are two general ways to solve this. One way is to seek the optimum solution, this can be achieved by applying a branch-and- bound algorithm. When using these algorithms the problem has to be greatly simplified to keep the computational cost at a reasonable level. Another option is to approximate the solution by using meta-heuristic methods. These methods aim to efficiently explore the different possible combinations so that a reasonable result can be obtained with a reasonable computational effort. To this end several population-based meta-heuristic methods are implemented and tested on simulated optical measurements. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention.