75 resultados para Clonal plasticity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During stereotactic functional neurosurgery, stimulation procedure to control for proper target localization provides a unique opportunity to investigate pathophysiological phenomena that cannot be addressed in experimental setups. Here we report on the distribution of response modalities to 487 intraoperative thalamic stimulations performed in 24 neurogenic pain (NP), 17 parkinsonian (PD) and 10 neuropsychiatric (Npsy) patients. Threshold responses were subdivided into somatosensory, motor and affective, and compared between medial (central lateral nucleus) and lateral (ventral anterior, ventral lateral and ventral medial) thalamic nuclei and between patients groups. Major findings were as follows: in the medial thalamus, evoked responses were for a large majority (95%) somatosensory in NP patients, 47% were motor in PD patients, and 54% affective in Npsy patients. In the lateral thalamus, a much higher proportion of somatosensory (83%) than motor responses (5%) was evoked in NP patients, while the proportion was reversed in PD patients (69% motor vs. 21% somatosensory). These results provide the first evidence for functional cross-modal changes in lateral and medial thalamic nuclei in response to intraoperative stimulations in different functional disorders. This extensive functional reorganization sheds new light on wide-range plasticity in the adult human thalamocortical system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Divergent selection acting on several different traits that cause multidimensional shifts are supposed to promote speciation, but the outcome of this process is highly dependent on the balance between the strength of selection vs. gene flow. Here, we studied a pair of sister species of Lake Victoria cichlids at a location where they hybridize and tested the hypothesis that divergent selection acting on several traits can maintain phenotypic differentiation despite gene flow. To explore the possible role of selection we tested for correlations between phenotypes and environment and compared phenotypic divergence (P-ST) with that based on neutral markers (F-ST). We found indications for disruptive selection acting on male breeding colour and divergent selection acting on several morphological traits. By performing common garden experiments we also separated the environmental and heritable components of divergence and found evidence for phenotypic plasticity in some morphological traits contributing to species differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fragmentation and vegetative regeneration from small fragments may contribute to population expansion, dispersal and establishment of new populations of introduced plants. However, no study has systematically tested whether a high capacity of vegetative regeneration is associated with a high degree of invasiveness. For small single-node fragments, the presence of internodes may increase regeneration capacity because internodes may store carbohydrates and proteins that can be used for regeneration. We conducted an experiment with 39 stoloniferous plant species to examine the regeneration capacity of small, single-node fragments with or without attached stolon internodes. We asked (1) whether the presence of stolon internodes increases regeneration from single-node fragments, (2) whether regeneration capacity differs between native and introduced species in China, and (3) whether regeneration capacity is positively associated with plant invasiveness at a regional scale (within China) and at a global scale. Most species could regenerate from single-node fragments, and the presence of internodes increased regeneration rate and subsequent growth and/or asexual reproduction. Regeneration capacity varied greatly among species, but showed no relationship to invasiveness, either in China or globally. High regeneration capacity from small fragments may contribute to performance of clonal plants in general, but it does not appear to explain differences in invasiveness among stoloniferous clonal species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heritable variation in plant phenotypes, and thus potential for evolutionary change, can in principle not only be caused by variation in DNA sequence, but also by underlying epigenetic variation. However, the potential scope of such phenotypic effects and their evolutionary significance are largely unexplored. Here, we conducted a glasshouse experiment in which we tested the response of a large number of epigenetic recombinant inbred lines (epiRILs) of Arabidopsis thaliana – lines that are nearly isogenic but highly variable at the level of DNA methylation – to drought and increased nutrient conditions. We found significant heritable variation among epiRILs both in the means of several ecologically important plant traits and in their plasticities to drought and nutrients. Significant selection gradients, that is, fitness correlations, of several mean traits and plasticities suggest that selection could act on this epigenetically based phenotypic variation. Our study provides evidence that variation in DNA methylation can cause substantial heritable variation of ecologically important plant traits, including root allocation, drought tolerance and nutrient plasticity, and that rapid evolution based on epigenetic variation alone should thus be possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. Methodology/Principal Findings In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). Conclusions/Significance Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive genetic analysis of 60 Mycoplasma sp. bovine group 7 isolates from different geographic origins and epidemiological settings is presented. Twenty-four isolates were recovered from the joints of calves during sporadic episodes of polyarthritis in geographically distinct regions of Queensland and New South Wales, Australia, including two clones of the type strain PG5O. A further three Australian isolates were also recovered from the tympanic bulla, retropharyngeal lymph node and the lung and another three isolates had unconfirmed histories. Six isolates originated from Germany, Portugal, Nigeria, and France. Twenty-four epidemiologically related isolates of Mycoplasma sp. bovine group 7 were recovered from multiple tissue sites and body fluids of infected calves with polyarthritis, mastitic milk, and from the stomach contents, lung and liver from aborted foetuses in three large, centrally managed dairy herds in New South Wales, Australia. Restriction endonuclease analysis (REA) of genomic DNA differentiated 29 Cfol profiles among these 60 isolates and grouped all 24 epidemiologically related isolates in a defined pattern showing a clonal origin. Three isolates of this clonal cluster were recovered from mastitic milk and the synovial exudate of clinically-affected calves and appeared sporadically for periods up to 18 months after the initial outbreak of polyarthritis indicating a persistent, close association of the organism with cattle in these herds. The Cfol profile representative of the clonal cluster was distinguishable from profiles of isolates recovered from multiple, unrelated cases of polyarthritis in Queensland and New South Wales and from other countries. All 24 isolates from the clonal cluster possessed a plasmid (pBG7AU) with a molecular size of 1022 bp. DNA sequence analysis of pBG7AU identified two open reading frames sharing 81 and 99% DNA sequence similarity with hypothetical replication control proteins A and B respectively, previously described in plasmid pADB201 isolated from M. mycoides subspecies mycoides. Other isolates of bovine group 7, epidemiologically unrelated to the clonal cluster, including two clones of the type strain PG5O, possessed a similar-sized plasmid. These data confirm that Mycoplasma sp. bovine group 7 is capable of migrating to, and multiplying within, different tissue sites within a single animal and among different animals within a herd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenotypes of plants, and thus their ecology and evolution, can be affected by the environmental conditions experienced by their parents, a phenomenon called parental effects or transgenerational plasticity. However, whether such effects are just passive responses or represent a special type of adaptive plasticity remains controversial because of a lack of solid tests of their adaptive significance. Here, we investigated transgenerational effects of different nutrient environments on the productivity, carbon storage and flowering phenology of the perennial plant Plantago lanceolata, and whether these effects are influenced by seasonal variation in the maternal environment. We found that maternal environments significantly affected the offspring phenotype, and that plants consistently produced more biomass and had greater root carbohydrate storage if grown under the same environmental conditions as experienced by their mothers. The observed transgenerational effects were independent of the season in which seeds had matured. We therefore conclude that transgenerational effects on biomass and carbon storage in P. lanceolata are adaptive regardless of the season of seed maturation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium bovis populations in countries with persistent bovine tuberculosis usually show a prevalent spoligotype with a wide geographical distribution. This study applied mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) typing to a random panel of 115 M. bovis isolates that are representative of the most frequent spoligotype in the Iberian Peninsula, SB0121. VNTR typing targeted nine loci: ETR-A (alias VNTR2165), ETR-B (VNTR2461), ETR-D (MIRU4, VNTR580), ETR-E (MIRU31, VNTR3192), MIRU26 (VNTR2996), QUB11a (VNTR2163a), QUB11b (VNTR2163b), QUB26 (VNTR4052), and QUB3232 (VNTR3232). We found a high degree of diversity among the studied isolates (discriminatory index [D] = 0.9856), which were split into 65 different MIRU-VNTR types. An alternative short-format MIRU-VNTR typing targeting only the four loci with the highest variability values was found to offer an equivalent discriminatory index. Minimum spanning trees using the MIRU-VNTR data showed the hypothetical evolution of an apparent clonal group. MIRU-VNTR analysis was also applied to the isolates of 176 animals from 15 farms infected by M. bovis SB0121; in 10 farms, the analysis revealed the coexistence of two to five different MIRU types differing in one to six loci, which highlights the frequency of undetected heterogeneity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE We explored whether altered expression of factors tuning mitochondrial metabolism contributes to muscular adaptations with endurance training in the condition of lowered ambient oxygen concentration (hypoxia) and whether these adaptations relate to oxygen transfer as reflected by subsarcolemmal mitochondria and oxygen metabolism in muscle. METHODS Male volunteers completed 30 bicycle exercise sessions in normoxia or normobaric hypoxia (4,000 m above sea level) at 65% of the respective peak aerobic power output. Myoglobin content, basal oxygen consumption, and re-oxygenation rates upon reperfusion after 8 min of arterial occlusion were measured in vastus muscles by magnetic resonance spectroscopy. Biopsies from vastus lateralis muscle, collected pre and post a single exercise bout, and training, were assessed for levels of transcripts and proteins being associated with mitochondrial metabolism. RESULTS Hypoxia specifically lowered the training-induced expression of markers of respiratory complex II and IV (i.e. SDHA and isoform 1 of COX-4; COX4I1) and preserved fibre cross-sectional area. Concomitantly, trends (p < 0.10) were found for a hypoxia-specific reduction in the basal oxygen consumption rate, and improvements in oxygen repletion, and aerobic performance in hypoxia. Repeated exercise in hypoxia promoted the biogenesis of subsarcolemmal mitochondria and this was co-related to expression of isoform 2 of COX-4 with higher oxygen affinity after single exercise, de-oxygenation time and myoglobin content (r ≥ 0.75). Conversely, expression in COX4I1 with training correlated negatively with changes of subsarcolemmal mitochondria (r < -0.82). CONCLUSION Hypoxia-modulated adjustments of aerobic performance with repeated muscle work are reflected by expressional adaptations within the respiratory chain and modified muscle oxygen metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel phenotypic divergence in replicated adaptive radiations could either result from parallel genetic divergence in response to similar divergent selec- tion regimes or from equivalent phenotypically plastic response to the repeated occurrence of contrasting environments. In post-glacial fish, repli- cated divergence in phenotypes along the benthic-limnetic habitat axis is commonly observed. Here, we use two benthic-limnetic species pairs of whitefish from two Swiss lakes, raised in a common garden design, with reciprocal food treatments in one species pair, to experimentally measure whether feeding efficiency on benthic prey has a genetic basis or whether it underlies phenotypic plasticity (or both). To do so, we offered experimental fish mosquito larvae, partially burried in sand, and measured multiple feed- ing efficiency variables. Our results reveal both, genetic divergence as well as phenotypically plastic divergence in feeding efficiency, with the pheno- typically benthic species raised on benthic food being the most efficient forager on benthic prey. This indicates that both, divergent natural selection on genetically heritable traits and adaptive phenotypic plasticity, are likely important mechanisms driving phenotypic divergence in adaptive radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Why is popular understanding of female-male differences still based on rigid models of development, even though contemporary developmental sciences emphasize plasticity? Is it because the science of sex differences still works from the same rigid models?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptic plasticity rules change during development: while hippocampal synapses can be potentiated by a single action potential pairing protocol in young neurons, mature neurons require burst firing to induce synaptic potentiation. An essential component for spike timing-dependent plasticity is the backpropagating action potential (BAP). BAP along the dendrites can be modulated by morphology and ion channel composition, both of which change during late postnatal development. However it is unclear whether these dendritic changes can explain the developmental changes in synaptic plasticity induction rules. Here, we show that tonic GABAergic inhibition regulates dendritic action potential backpropagation in adolescent but not pre-adolescent CA1 pyramidal neurons. These developmental changes in tonic inhibition also altered the induction threshold for spike timing-dependent plasticity in adolescent neurons. This GABAergic regulatory effect upon backpropagation is restricted to distal regions of apical dendrites (>200 μm) and mediated by α5-containing GABA(A) receptors. Direct dendritic recordings demonstrate α5-mediated tonic GABA(A) currents in adolescent neurons which can modulate backpropagating action potentials. These developmental modulations in dendritic excitability could not be explained by concurrent changes in dendritic morphology. To explain our data, model simulations propose a distally-increasing or localized distal expression of dendritic α5 tonic inhibition in mature neurons. Overall, our results demonstrate that dendritic integration and plasticity in more mature dendrites are significantly altered by tonic α5 inhibition in a dendritic region-specific and developmentally-regulated manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thigmomorphogenesis, the characteristic phenotypic changes by which plants react to mechanical stress, is a widespread and probably adaptive type of phenotypic plasticity. However, little is known about its genetic basis and population variation. Here, we examine genetic variation for thigmomorphogenesis within and among natural populations of the model system Arabidopsis thaliana. Offspring from 17 field-collected European populations was subjected to three levels of mechanical stress exerted by wind. Overall, plants were remarkably tolerant to mechanical stress. Even high wind speed did not significantly alter the correlation structure among phenotypic traits. However, wind significantly affected plant growth and phenology, and there was genetic variation for some aspects of plasticity to wind among A. thaliana populations. Our most interesting finding was that phenotypic traits were organized into three distinct and to a large degree statistically independent covariance modules associated with plant size, phenology, and growth form, respectively. These phenotypic modules differed in their responsiveness to wind, in the degree of genetic variability for plasticity, and in the extent to which plasticity affected fitness. It is likely, therefore, that thigmomorphogenesis in this species evolves quasi-independently in different phenotypic modules.