59 resultados para Clavibacter michiganense subsp. michiganense
Resumo:
Molecular diagnosis of canine bartonellosis can be extremely challenging and often requires the use of an enrichment culture approach followed by PCR amplification of bacterial DNA. HYPOTHESES: (1) The use of enrichment culture with PCR will increase molecular detection of bacteremia and will expand the diversity of Bartonella species detected. (2) Serological testing for Bartonella henselae and Bartonella vinsonii subsp. berkhoffii does not correlate with documentation of bacteremia. ANIMALS: Between 2003 and 2009, 924 samples from 663 dogs were submitted to the North Carolina State University, College of Veterinary Medicine, Vector Borne Diseases Diagnostic Laboratory for diagnostic testing with the Bartonella α-Proteobacteria growth medium (BAPGM) platform. Test results and medical records of those dogs were retrospectively reviewed. METHODS: PCR amplification of Bartonella sp. DNA after extraction from patient samples was compared with PCR after BAPGM enrichment culture. Indirect immunofluorescent antibody assays, used to detect B. henselae and B. vinsonii subsp. berkhoffii antibodies, were compared with PCR. RESULTS: Sixty-one of 663 dogs were culture positive or had Bartonella DNA detected by PCR, including B. henselae (30/61), B. vinsonii subsp. berkhoffii (17/61), Bartonella koehlerae (7/61), Bartonella volans-like (2/61), and Bartonella bovis (2/61). Coinfection with more than 1 Bartonella sp. was documented in 9/61 dogs. BAPGM culture was required for PCR detection in 32/61 cases. Only 7/19 and 4/10 infected dogs tested by IFA were B. henselae and B. vinsonii subsp. berkhoffii seroreactive, respectively. CONCLUSIONS AND CLINICAL IMPORTANCE: Dogs were most often infected with B. henselae or B. vinsonii subsp. berkhoffii based on PCR and enrichment culture, coinfection was documented, and various Bartonella species were identified. Most infected dogs did not have detectable Bartonella antibodies.
Resumo:
We compared clinicopathologic findings in dogs with Bartonella infection to Bartonella spp. negative dogs suspected of a vector-borne disease. Cases (n=47) and controls (n=93) were selected on the basis of positive or negative enrichment culture PCR results, respectively. Signalment, clinicopathologic findings and treatments were extracted from medical records. DNA sequencing identified Bartonella henselae (n=28, 59.6%), Bartonella vinsonii subsp. berkhoffii (n=20, 42.6%), Bartonella koehlerae (n=3, 6.4%), Bartonella volans-like (n=3, 6.4%) and Bartonella bovis (n=1, 2.1%). There were no significant differences in age, breed, size, sex or neuter status between cases and controls. Dogs infected with Bartonella sp. often had a history of weight loss [OR=2.82; 95% CI: 1.08-7.56] and were hypoglobulinemic [OR=4.26; 95% CI: 1.31-14.41]. With the exception of weight loss and hypoglobulinemia, clinicopathologic abnormalities in Bartonella-infected dogs in this study were similar to dogs suspected of other vector-borne infections.
Resumo:
After a short-term fever, complex regional pain syndrome, characterized by hyperalgesia, intermittent swelling, erythema and cyanosis of both feet, was diagnosed in a female veterinarian. The woman was infected with Bartonella koehlerae and she was also Bartonella vinsonii subsp. berkhoffii seroreactive. Having failed other treatments, symptoms resolved following initiation of antibiotics.
Resumo:
A die-off of passerine birds, mostly Eurasian siskins (Carduelis spinus), occurred in multiple areas of Switzerland between February and March 2010. Several of the dead birds were submitted for full necropsy. Bacteriological examination was carried out on multiple tissues of each bird. At gross examination, common findings were light-tan nodules, 1 to 4 mm in diameter, scattered through the esophagus/crop. Histologically, a necroulcerative transmural esophagitis/ingluvitis was observed. Bacterial cultures yielded Salmonella enterica subsp. enterica serovar Typhimurium. At the same time, 2 pet clinics reported an unusual increase of domestic cats presented with fever, anorexia, occasionally dolent abdomen, and history of presumed consumption of passerine birds. Analysis of rectal swabs revealed the presence of S. Typhimurium in all tested cats. PFGE (pulsed field electrophoresis) analysis was performed to characterize and compare the bacterial isolates, and it revealed an indistinguishable pattern between all the avian and all but 1 of the feline isolates. Cloacal swabs collected from clinically healthy migrating Eurasian siskins (during autumn 2010) did not yield S. Typhimurium. The histological and bacteriological findings were consistent with a systemic infection caused by S. Typhimurium. Isolation of the same serovar from the dead birds and ill cats, along with the overlapping results of the PFGE analysis for all the animal species, confirmed a spillover from birds to cats through predation. The sudden increase of the number of siskins over the Swiss territory and their persistency during the whole winter of 2009-2010 is considered the most likely predisposing factor for the onset of the epidemic.
Resumo:
BACKGROUND Contagious Bovine Pleuropneumonia (CBPP) is the most important chronic pulmonary disease of cattle on the African continent causing severe economic losses. The disease, caused by infection with Mycoplasma mycoides subsp. mycoides is transmitted by animal contact and develops slowly into a chronic form preventing an early clinical diagnosis. Because available vaccines confer a low protection rate and short-lived immunity, the rapid diagnosis of infected animals combined with traditional curbing measures is seen as the best way to control the disease. While traditional labour-intensive bacteriological methods for the detection of M. mycoides subsp. mycoides have been replaced by molecular genetic techniques in the last two decades, these latter approaches require well-equipped laboratories and specialized personnel for the diagnosis. This is a handicap in areas where CBPP is endemic and early diagnosis is essential. RESULTS We present a rapid, sensitive and specific diagnostic tool for M. mycoides subsp. mycoides detection based on isothermal loop-mediated amplification (LAMP) that is applicable to field conditions. The primer set developed is highly specific and sensitive enough to diagnose clinical cases without prior cultivation of the organism. The LAMP assay detects M. mycoides subsp. mycoides DNA directly from crude samples of pulmonary/pleural fluids and serum/plasma within an hour using a simple dilution protocol. A photometric detection of LAMP products allows the real-time visualisation of the amplification curve and the application of a melting curve/re-association analysis presents a means of quality assurance based on the predetermined strand-inherent temperature profile supporting the diagnosis. CONCLUSION The CBPP LAMP developed in a robust kit format can be run on a battery-driven mobile device to rapidly detect M. mycoides subsp. mycoides infections from clinical or post mortem samples. The stringent innate quality control allows a conclusive on-site diagnosis of CBPP such as during farm or slaughter house inspections.
Resumo:
BACKGROUND The insertion element IS630 found in Aeromonas salmonicida belongs to the IS630-Tc1-mariner superfamily of transposons. It is present in multiple copies and represents approximately half of the IS present in the genome of A. salmonicida subsp. salmonicida A449. RESULTS By using High Copy Number IS630 Restriction Fragment Length Polymorphism (HCN-IS630-RFLP), strains of various subspecies of Aeromonas salmonicida showed conserved or clustering patterns, thus allowing their differentiation from each other. Fingerprints of A. salmonicida subsp. salmonicida showed the highest homogeneity while 'atypical' A. salmonicida strains were more heterogeneous. IS630 typing also differentiated A. salmonicida from other Aeromonas species. The copy number of IS630 in Aeromonas salmonicida ranges from 8 to 35 and is much lower in other Aeromonas species. CONCLUSIONS HCN-IS630-RFLP is a powerful tool for subtyping of A. salmonicida. The high stability of IS630 insertions in A. salmonicida subsp. salmonicida indicates that it might have played a role in pathoadaptation of A. salmonicida which has reached an optimal configuration in the highly virulent and specific fish pathogen A. salmonicida subsp. salmonicida.
Resumo:
The 'Mycoplasma mycoides cluster' comprises the ruminant pathogens Mycoplasma mycoides subsp. mycoides the causative agent of contagious bovine pleuropneumonia (CBPP), Mycoplasma capricolum subsp. capripneumoniae the agent of contagious caprine pleuropneumonia (CCPP), Mycoplasma capricolum subsp. capricolum, Mycoplasma leachii and Mycoplasma mycoides subsp. capri. CBPP and CCPP are major livestock diseases and impact the agricultural sector especially in developing countries through reduced food-supply and international trade restrictions. In addition, these diseases are a threat to disease-free countries. We used a multilocus sequence typing (MLST) approach to gain insights into the demographic history of and phylogenetic relationships among the members of the 'M. mycoides cluster'. We collected partial sequences from seven housekeeping genes representing a total of 3,816 base pairs from 118 strains within this cluster, and five strains isolated from wild Caprinae. Strikingly, the origin of the 'M. mycoides cluster' dates to about 10,000 years ago, suggesting that the establishment and spread of the cluster coincided with livestock domestication. In addition, we show that hybridization and recombination may be important factors in the evolutionary history of the cluster.
Resumo:
A Tn916-like transposon (TnFO1) was found in the multiple antibiotic resistant Enterococcus faecalis strain FO1 isolated from a raw milk cheese. In this strain, the tetracycline determinant was localized by DNA-DNA hybridization with a tetM nucleotide probe on the chromosome and on a 30-kb plasmid. The transposon TnFO1 was identified and characterized by DNA-DNA hybridization experiments with the five internal HincII fragments of Tn916. The tetracycline resistance determinant was identified by its complete nucleotide sequence as TetM. Transposon TnFO1 was also detected in its circular form by DNA-DNA hybridization and PCR amplification. Both ends including the joining region of the closed circular transposon TnFO1 were sequenced. TnFO1 could be transferred by conjugation from Enterococcus faecalis into Enterococcus faecalis, Lactococcus lactis subsp. lactis biovar. diacetylactis, Listeria innocua, Leuconostoc mesenteroides and Staphylococcus aureus, and from Lactococcus lactis subsp. lactis biovar. diacetylactis into Listeria innocua. Pulsed-field electrophoresis of genomic DNA from E. faecalis FO1 transconjugants showed that transposon TnFO1 integrated at different sites.
Resumo:
The mdt(A) gene, previously designated mef214, from Lactococcus lactis subsp. lactis plasmid pK214 encodes a protein [Mdt(A) (multiple drug transporter)] with 12 putative transmembrane segments (TMS) that contain typical motifs conserved among the efflux proteins of the major facilitator superfamily. However, it also has two C-motifs (conserved in the fifth TMS of the antiporters) and a putative ATP-binding site. Expression of the cloned mdt(A) gene decreased susceptibility to macrolides, lincosamides, streptogramins, and tetracyclines in L. lactis and Escherichia coli, but not in Enterococcus faecalis or in Staphylococcus aureus. Glucose-dependent efflux of erythromycin and tetracycline was demonstrated in L. lactis and in E. coli.
Resumo:
AIMS This study was to investigate and to characterize methicillin-resistant coagulase-positive staphylococci (MRCoPS) harboring in dogs and people associated with dogs in Thailand. METHODS AND RESULTS Staphylococci were collected from 100 dogs, 100 dog owners, 200 small animal veterinarians and 100 people without pet association. Species of MRCoPS were identified phenotypically and genotypically. Molecular characteristics were determined by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) and SCCmec typing, and antimicrobial susceptibility was assayed by broth microdilution and by microarray analysis for resistance genes. Methicillin-resistant Staphylococcus pseudintermedius (MRSP), methicillin-resistant Staphylococcus schleiferi subsp. coagulans (MRSSc) and methicillin-resistant Staphylococcus aureus (MRSA) were isolated from dogs (45, 17 and 1%, respectively), veterinarians (8, 2 and 1·5%, respectively) and dog owners (3, 2 and 0%, respectively). Seventeen sequence types (STs) were identified among 83 MRSP isolates which specifically carried SCCmec V, II-III, ΨSCCmec57395 and three uncharacterized SCCmec types. MRSP ST 45, 68 and novel STs including 169, 178, 181 and 183 were shared among canine and human isolates. Most of MRSA ST398 and MRSSc carried SCCmec type V. The MRCoPS commonly displayed multiple resistances to tested antimicrobials and carried various resistance genes. CONCLUSION Variety of MRCoPS, especially new MRSP clones, distributed in dogs and people in Thailand. SIGNIFICANCE AND IMPACT OF THE STUDY The existence of MRCoPS circulating between dogs and humans in Thailand provides indirect evidence of interspecies transmission and represents a potential public health hazard.
Resumo:
Staphylococcus aureus subsp. anaerobius is the causative agent of Morel’s disease in goats and sheep. We report the first outbreak of Morel’s disease in a Swiss goat flock. Multilocus sequence typing revealed that the Swiss isolates belong to sequence type (ST)1464, which is the ST responsible for outbreaks worldwide.
Resumo:
• Premise of the study: Isometric and allometric scaling of a conserved floral plan could provide a parsimonious mechanism for rapid and reversible transitions between breeding systems. This scaling may occur during transitions between predominant autogamy and xenogamy, contributing to the maintenance of a stable mixed mating system. • Methods: We compared nine disjunct populations of the polytypic, mixed mating species Oenothera flava (Onagraceae) to two parapatric relatives, the obligately xenogamous species O. acutissima and the mixed mating species O. triloba. We compared floral morphology of all taxa using principal component analysis (PCA) and developmental trajectories of floral organs using ANCOVA homogeneity of slopes. • Key results: The PCA revealed both isometric and allometric scaling of a conserved floral plan. Three principal components (PCs) explained 92.5% of the variation in the three species. PC1 predominantly loaded on measures of floral size and accounts for 36% of the variation. PC2 accounted for 35% of the variation, predominantly in traits that influence pollinator handling. PC3 accounted for 22% of the variation, primarily in anther–stigma distance (herkogamy). During O. flava subsp. taraxacoides development, style elongation was accelerated relative to anthers, resulting in positive herkogamy. During O. flava subsp. flava development, style elongation was decelerated, resulting in zero or negative herkogamy. Of the two populations with intermediate morphology, style elongation was accelerated in one population and decelerated in the other. • Conclusions: Isometric and allometric scaling of floral organs in North American Oenothera section Lavauxia drive variation in breeding system. Multiple developmental paths to intermediate phenotypes support the likelihood of multiple mating system transitions.
Resumo:
Infectious disease outbreaks can be devastating because of their sudden occurrence, as well as the complexity of monitoring and controlling them. Outbreaks in wildlife are even more challenging to observe and describe, especially when small animals or secretive species are involved. Modeling such infectious disease events is relevant to investigating their dynamics and is critical for decision makers to accomplish outbreak management. Tularemia, caused by the bacterium Francisella tularensis, is a potentially lethal zoonosis. Of the few animal outbreaks that have been reported in the literature, only those affecting zoo animals have been closely monitored. Here, we report the first estimation of the basic reproduction number R0 of an outbreak in wildlife caused by F. tularensis using quantitative modeling based on a susceptible-infected-recovered framework. We applied that model to data collected during an extensive investigation of an outbreak of tularemia caused by F. tularensis subsp. holarctica (also designated as type B) in a closely monitored, free-roaming house mouse (Mus musculus domesticus) population in Switzerland. Based on our model and assumptions, the best estimated basic reproduction number R0 of the current outbreak is 1.33. Our results suggest that tularemia can cause severe outbreaks in small rodents. We also concluded that the outbreak self-exhausted in approximately three months without administrating antibiotics.
Resumo:
Mycoplasma mycoides subsp. capri (Mmc) and subsp. mycoides (Mmm) are important ruminant pathogens worldwide causing diseases such as pleuropneumonia, mastitis and septicaemia. They express galactofuranose residues on their surface, but their role in pathogenesis has not yet been determined. The M. mycoides genomes contain up to several copies of the glf gene, which encodes an enzyme catalysing the last step in the synthesis of galactofuranose. We generated a deletion of the glf gene in a strain of Mmc using genome transplantation and tandem repeat endonuclease coupled cleavage (TREC) with yeast as an intermediary host for the genome editing. As expected, the resulting YCp1.1-Δglf strain did not produce the galactofuranose-containing glycans as shown by immunoblots and immuno-electronmicroscopy employing a galactofuranose specific monoclonal antibody. The mutant lacking galactofuranose exhibited a decreased growth rate and a significantly enhanced adhesion to small ruminant cells. The mutant was also 'leaking' as revealed by a β-galactosidase-based assay employing a membrane impermeable substrate. These findings indicate that galactofuranose-containing polysaccharides conceal adhesins and are important for membrane integrity. Unexpectedly, the mutant strain showed increased serum resistance.