53 resultados para Chromatin remodeling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, Caenorhabditis elegans has emerged as a new model to investigate the relationships between nuclear architecture, cellular differentiation, and organismal development. On one hand, C. elegans with its fixed lineage and transparent body is a great model organism to observe gene functions in vivo in specific cell types using microscopy. On the other hand, two different techniques have been applied in nematodes to identify binding sites for chromatin-associated proteins genome-wide: chromatin immunoprecipitation (ChIP), and Dam-mediated identification (DamID). We summarize here all three techniques together as they are complementary. We also highlight strengths and differences of the individual approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. IMPORTANCE: Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heart and the urinary bladder are hollow muscular organs, which can be afflicted by pressure overload injury due to pathological conditions such as hypertension and bladder outlet obstruction. This increased outflow resistance induces hypertrophy, marked by dramatic changes in the organs' phenotype and function. The end result in both the heart and the bladder can be acute organ failure due to advanced fibrosis and the subsequent loss of contractility. There is emerging evidence that microRNAs (miRNAs) play an important role in the pathogenesis of heart failure and bladder dysfunction. MiRNAs are endogenous non-coding single-stranded RNAs, which regulate gene expression and control adaptive and maladaptive organ remodeling processes. This Review summarizes the current knowledge of molecular alterations in the heart and the bladder and highlights common signaling pathways and regulatory events. The miRNA expression analysis and experimental target validation done in the heart provide a valuable source of information for investigators working on the bladder and other organs undergoing the process of fibrotic remodeling. Aberrantly expressed miRNA are amendable to pharmacological manipulation, offering an opportunity for development of new therapies for cardiac and bladder hypertrophy and failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd(-/-)) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd(-/-) mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd(-/-) mice. These changes were reduced in DiNOS, and compared with Sftpd(-/-) mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd(-/-). Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Extensive endurance training and arterial hypertension are established risk factors for atrial fibrillation. We aimed to assess the proportion of masked hypertension in endurance athletes and the impact on cardiac remodeling, mechanics, and supraventricular tachycardias (SVT). METHODS: Male participants of a 10-mile race were recruited and included if office blood pressure was normal (<140/90 mmHg). Athletes were stratified into a masked hypertension and normotension group by ambulatory blood pressure. Primary endpoint was diastolic function, expressed as peak early diastolic mitral annulus velocity (E'). Left ventricular global strain, left ventricular mass/volume ratio, left atrial volume index, signal-averaged P-wave duration (SAPWD), and SVT during 24-h Holter monitoring were recorded. RESULTS: From 108 runners recruited, 87 were included in the final analysis. Thirty-three (38%) had masked hypertension. The mean age was 42 +/- 8 years. Groups did not differ with respect to age, body composition, cumulative training hours, and 10-mile race time. Athletes with masked hypertension had a lower E' and a higher left ventricular mass/volume ratio. Left ventricular global strain, left atrial volume index, SAPWD, and SVT showed no significant differences between the groups. In multiple linear regression analysis, masked hypertension was independently associated with E' (beta = -0.270, P = 0.004) and left ventricular mass/volume ratio (beta = 0.206, P = 0.049). Cumulative training hours was the only independent predictor for left atrial volume index (beta = 0.474, P < 0.001) and SAPWD (beta = 0.481, P < 0.001). CONCLUSION: In our study, a relevant proportion of middle-aged athletes had masked hypertension, associated with a lower diastolic function and a higher left ventricular mass/volume ratio, but unrelated to left ventricular systolic function, atrial remodeling, or SVT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Although regular physical exercise clearly reduces cardiovascular morbidity risk, long-term endurance sports practice has been recognized as a risk factor for atrial fibrillation (AF). However, the mechanisms how endurance sports can lead to AF are not yet clear. The aim of our present study was to investigate the influence of long-term endurance training on vagal tone, atrial size, and inflammatory profile in professional elite soccer players. METHODS: A total of 25 professional major league soccer players (mean age 24+/-4 years) and 20 sedentary controls (mean age 26+/-3 years) were included in the study and consecutively examined. All subjects underwent a sports cardiology check-up with physical examination, electrocardiography, echocardiography, exercise testing on a bicycle ergometer, and laboratory analysis [standard laboratory and cytokine profile: interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, IL-8, IL-10]. RESULTS: Athletes were divided into two groups according to presence or absence of an early repolarization (ER) pattern, defined as a ST-segment elevation at the J-point (STE) >/=0.1mm in 2 leads. Athletes with an ER pattern showed significantly lower heart rate and an increased E/e' ratio compared to athletes without an ER pattern. STE significantly correlated with E/e' ratio as well as with left atrial (LA) volume. The pro-inflammatory cytokines IL-6, IL-8, TNF-alpha as well as the anti-inflammatory cytokine IL-10 were significantly elevated in all soccer players. However, athletes with an ER pattern had significantly higher IL-6 plasma levels than athletes without ER pattern. Furthermore, athletes with "high" level IL-6 had significantly larger LA volumes than players with "low" level IL-6. CONCLUSIONS: Athletes with an ER pattern had significantly higher E/e' ratios, reflecting higher atrial filling pressures, higher LA volume, and higher IL-6 plasma levels. All these factors may contribute to atrial remodeling over time and thus increase the risk of AF in long-term endurance sports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons exploit local mRNA translation and retrograde transport of transcription factors to regulate gene expression in response to signaling events at distal neuronal ends. Whether epigenetic factors could also be involved in such regulation is not known. We report that the mRNA encoding the high-mobility group N5 (HMGN5) chromatin binding protein localizes to growth cones of both neuron-like cells and of hippocampal neurons, where it has the potential to be translated, and that HMGN5 can be retrogradely transported into the nucleus along neurites. Loss of HMGN5 function induces transcriptional changes and impairs neurite outgrowth, while HMGN5 overexpression induces neurite outgrowth and chromatin decompaction; these effects are dependent on growth cone localization of Hmgn5 mRNA. We suggest that the localization and local translation of transcripts coding for epigenetic factors couple the dynamic neuronal outgrowth process with chromatin regulation in the nucleus.