84 resultados para Cell Proliferation Control


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The apicomplexan parasites Theileria annulata and Theileria parva cause severe lymphoproliferative disorders in cattle. Disease pathogenesis is linked to the ability of the parasite to transform the infected host cell (leukocyte) and induce uncontrolled proliferation. It is known that transformation involves parasite dependent perturbation of leukocyte signal transduction pathways that regulate apoptosis, division and gene expression, and there is evidence for the translocation of Theileria DNA binding proteins to the host cell nucleus. However, the parasite factors responsible for the inhibition of host cell apoptosis, or induction of host cell proliferation are unknown. The recent derivation of the complete genome sequence for both T. annulata and T. parva has provided a wealth of information that can be searched to identify molecules with the potential to subvert host cell regulatory pathways. This review summarizes current knowledge of the mechanisms used by Theileria parasites to transform the host cell, and highlights recent work that has mined the Theileria genomes to identify candidate manipulators of host cell phenotype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: We wished to investigate the toxicity of four immunosuppressant and antimetabolic drugs, which are known to influence postoperative wound healing, on three different human ocular cell lines. METHODS: Acute toxicity to cyclosporin A, azathioprine, mitomicyn C and daunorubicin was assessed in Chang cells by monitoring their uptake of propidium iodide during a 3-h period. Chronic toxicity was assessed by monitoring the proliferation and viability of subconfluent cultures of Chang cells, human corneal endothelial cells (HCECs) and retinal pigmented epithelial (RPE) cells after continuous exposure to the drugs for 7 days. RESULTS: Acute toxicity testing revealed no obvious effects. However, the chronic toxicity tests disclosed a narrow concentration range over which cell proliferation decreased dramatically but calcein metabolism was sustained. Although the three lines reacted similarly to each agent, HCECs were the most vulnerable to daunorubicin and mitomycin. At a daunorubicin concentration of 0.05 microg/ml, a 75% decrease in calcein metabolism (P < 0.001) and a > or = 95% cell loss (P < 0.001) were observed. At a mitomycin concentration of 0.01 mug/ml, cell density decreased by 61% (P < 0.001) without a change in calcein metabolism, but at 0.1 microg/ml, the latter parameter decreased to 12% (P = 0.00014). At this concentration the proliferation of Chang and RPE cells decreased by more than 50%, whilst calcein metabolism was largely sustained. Cyclosporin inhibited cell proliferation moderately at lower concentrations (< 5 microg/ml; P=0.05) and substantially at higher ones, with a corresponding decline in calcein metabolism. Azathioprine induced a profound decrease in both parameters at concentrations above 5 microg/ml. CONCLUSION: Daunorubicin, cyclosporin and azathioprine could be used to inhibit excessive intraocular scarring after glaucoma and vitreoretinal surgery without overly reducing cell viability. The attributes of immunosuppressants lie in their combined antiproliferative and immunomodulatory effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-beta1 (TGF-beta1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-beta1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CD40 and its ligand regulate pleiotropic biological responses, including cell proliferation, differentiation, and apoptosis. In many inflammatory lung diseases, tissue damage by environmental or endogenous oxidants plays a major role in disease pathogenesis. As the epithelial barrier is a major target for these oxidants, we postulated that CD40, the expression of which is increased in asthma, plays a role in the regulation of apoptosis of bronchial epithelial cells exposed to oxidants. Using 16HBE 14o- cells exposed to oxidant stress, we found that ligation of CD40 (induced by G28-5 monoclonal antibodies) enhanced cell survival and increased the number of cells in G2/M (interphase between DNA synthesis and mitosis) of the cell cycle. This was associated with NF-kappaB and activator protein-1 activation and increased expression of the inhibitor of apoptosis, c-IAP1. However, oxidant stress-induced apoptosis was found to be caspase- and calpain-independent implicating CD40 ligation as a regulator of caspase-independent cell death. This was confirmed by the demonstration that CD40 ligation prevented mitochondrial release and nuclear translocation of apoptosis inducing factor. In conclusion, we demonstrate a novel role for CD40 as a regulator of epithelial cell survival against oxidant stress. Furthermore, we have identified, for the first time, an endogenous inhibitory pathway of caspase-independent cell death.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of vitamin E on proliferation, integrin expression, adhesion, and migration in human glioma cells has been studied. gamma-tocopherol at 50 microM concentration exerted more inhibitory effect than alpha-tocopherol at the same concentration on glioma cell proliferation. Integrin alpha5 and beta1 protein levels were increased upon both alpha- and gamma-tocopherol treatments. In parallel, an increase in the alpha5beta1 heterodimer cell surface expression was observed. The tocopherols inhibited glioma cell-binding to fibronectin where gamma-tocopherol treatment induced glioma cell migration. Taken together, the data reported here are consistent with the notion that the inhibition of glioma cell proliferation induced by tocopherols may be mediated, at least in part, by an increase in integrin alpha5 and beta1 expression. Cell adhesion is also negatively affected by tocopherols, despite a small increase in the surface appearance of the alpha5beta1 heterodimer. Cell migration is stimulated by gamma-tocopherol. It is concluded that alpha5 and beta1 integrin expression and surface appearance are not sufficient to explain all the observations and that other integrins or in general other factors may be associated with these events.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mouse cell lines were immortalized by introduction of specific immortalizing genes. Embryonic and adult animals and an embryonal stem cell line were used as a source of primary cells. The immortalizing genes were either introduced by DNA transfection or by ecotropic retrovirus transduction. Fibroblasts were obtained by expression of SV40 virus large T antigen (TAg). The properties of the resulting fibroblast cell lines were reproducible, independent of the donor mouse strains employed and the cells showed no transformed properties in vitro and did not form tumors in vivo. Endothelial cell lines were generated by Polyoma virus middle T antigen expression in primary embryonal cells. These cell lines consistently expressed relevant endothelial cell surface markers. Since the expression of the immortalizing genes was expected to strongly influence the cellular characteristics fibroblastoid cells were reversibly immortalized by using a vector that allows conditional expression of the TAg. Under inducing conditions, these cells exhibited properties that were highly similar to the properties of constitutively immortalized cells. In the absence of TAg expression, cell proliferation stops. Cell growth is resumed when TAg expression is restored. Gene expression profiling indicates that TAg influences the expression levels of more than 1000 genes that are involved in diverse cellular processes. The data show that conditionally immortalized cell lines have several advantageous properties over constitutively immortalized cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Liver receptor homolog-1 (LRH-1) is a nuclear receptor involved in intestinal lipid homeostasis and cell proliferation. Here we show that haploinsufficiency of LRH-1 predisposes mice to the development of intestinal inflammation. Besides the increased inflammatory response, LRH-1 heterozygous mice exposed to 2,4,6-trinitrobenzene sulfonic acid show lower local corticosterone production as a result of an impaired intestinal expression of the enzymes CYP11A1 and CYP11B1, which control the local synthesis of corticosterone in the intestine. Local glucocorticoid production is strictly enterocyte-dependent because it is robustly reduced in epithelium-specific LRH-1-deficient mice. Consistent with these findings, colon biopsies of patients with Crohn's disease and ulcerative colitis show reduced expression of LRH-1 and genes involved in the production of glucocorticoids. Hence, LRH-1 regulates intestinal immunity in response to immunological stress by triggering local glucocorticoid production. These findings underscore the importance of LRH-1 in the control of intestinal inflammation and the pathogenesis of inflammatory bowel disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: Nitric oxide (NO) inhibits thrombus formation, vascular contraction, and smooth muscle cell proliferation. We investigated whether NO release is enhanced after endothelial NO synthase (eNOS) gene transfer in atherosclerotic human carotid artery ex vivo. METHODS AND RESULTS: Western blotting and immunohistochemistry revealed that transduction enhanced eNOS expression; however, neither nitrite production nor NO release measured by porphyrinic microsensor was altered. In contrast, transduction enhanced NO production in non-atherosclerotic rat aorta and human internal mammary artery. In transduced carotid artery, calcium-dependent eNOS activity was minimal and did not differ from control conditions. Vascular tetrahydrobiopterin concentrations did not differ between the experimental groups.Treatment of transduced carotid artery with FAD, FMN, NADPH, L-arginine, and either sepiapterin or tetrahydrobiopterin did not alter NO release. Superoxide formation was similar in transduced carotid artery and control. Treatment of transduced carotid artery with superoxide dismutase (SOD), PEG-SOD, PEG-catalase did not affect NO release. CONCLUSIONS: eNOS transduction in atherosclerotic human carotid artery results in high expression without any measurable activity of the recombinant protein. The defect in the atherosclerotic vessels is neither caused by cofactor deficiency nor enhanced NO breakdown. Since angioplasty is performed in atherosclerotic arteries,eNOS gene therapy is unlikely to provide clinical benefit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lymphocyte stimulation tests (LST) were performed in five dogs sensitised with ovalbumin (OVA) and seven healthy dogs. In addition, all five OVA-sensitised and two control dogs were tested after two in vivo provocations with OVA-containing eye drops. The isolated cells were suspended in culture media containing OVA and were cultured for up to 12 days. Proliferation was measured as reduction in 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) intensity by flow cytometry on days 0, 3, 6, 9 and 12. A cell proliferation index (CPI) for each day and the area under the curve (AUC) of the CPI was calculated for each dog. All OVA-sensitised dogs demonstrated increased erythema after conjunctival OVA application. The presence of OVA-specific lymphocytes was demonstrated in 2/5 OVA-sensitised dogs before and 4/5 after in vivo provocation. Using the AUC, the difference between OVA-sensitised and control dogs was significant in all three LST before in vivo provocation (P<0.05) and borderline significant (P=0.053) in 2/3 LST after provocation. The most significant difference in CPI was observed after 9 days of culture (P=0.001). This pilot study indicates that the LST allows detection of rare antigen specific memory T-cells in dogs previously sensitised to, but not concurrently undergoing challenge by a specific antigen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sampling and analyzing new families with inherited blood disorders are major steps contributing to the identification of gene(s) responsible for normal and pathologic hematopoiesis. Familial occurrences of hematological disorders alone, or as part of a syndromic disease, have been reported, and for some the underlying genetic mutation has been identified. Here we describe a new autosomal dominant inherited phenotype of thrombocytopenia and red cell macrocytosis in a four-generation pedigree. Interestingly, in the youngest generation, a 2-year-old boy presenting with these familial features has developed acute lymphoblastic leukemia characterized by a t(12;21) translocation. Tri-lineage involvement of platelets, red cells and white cells may suggest a genetic defect in an early multiliear progenitor or a stem cell. Functional assays in EBV-transformed cell lines revealed a defect in cell proliferation and tubulin dynamics. Two candidate genes, RUNX1 and FOG1, were sequenced but no pathogenic mutation was found. Identification of the underlying genetic defect(s) in this family may help in understanding the complex process of hematopoiesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small cell lung cancer (SCLC) is characterized by an aggressive phenotype and acquired resistance to a broad spectrum of anticancer agents. TNF-related apoptosis-inducing ligand (TRAIL) has been considered as a promising candidate for safe and selective induction of tumor cell apoptosis without toxicity to normal tissues. Here we report that TRAIL failed to induce apoptosis in SCLC cells and instead resulted in an up to 40% increase in proliferation. TRAIL-induced SCLC cell proliferation was mediated by extracellular signal-regulated kinase 1 and 2, and dependent on the expression of surface TRAIL-receptor 2 (TRAIL-R2) and lack of caspase-8, which is frequent in SCLC. Treatment of SCLC cells with interferon-gamma (IFN-gamma) restored caspase-8 expression and facilitated TRAIL-induced apoptosis. The overall loss of cell proliferation/viability upon treatment with the IFN-gamma-TRAIL combination was 70% compared to TRAIL-only treated cells and more than 30% compared to untreated cells. Similar results were obtained by transfection of cells with a caspase-8 gene construct. Altogether, our data suggest that TRAIL-R2 expression in the absence of caspase-8 is a negative determinant for the outcome of TRAIL-based cancer therapy, and provides the rationale for using IFN-gamma or other strategies able to restore caspase-8 expression to convert TRAIL from a pro-survival into a death ligand.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

New vessel formation and tumor infiltrating lymphocytes (TIL) influence host responses to malignant tissues. Extracellular adenosine-mediated pathways promote both vascular endothelial cell proliferation and inhibit cytotoxic T cells, thereby potentiating cancer growth. CD39 is the dominant ectonucleotidase of vascular and T regulatory cells and has the potential to generate high levels of adenosine locally. We have previously shown that deletion of Cd39 results in angiogenic failure and T regulatory cell dysfunction with loss of immune suppressive functions. Aim: Investigate impact of CD39 upon development of hepatic metastases. Methods and Results: We studied the development of metastatic liver deposits following portal vein infusion of 1.5x105 melanoma B16/F10 cells, with luciferase expression, in wild type and Cd39-null C57BL/6 mice (n=24). Tumor formation in liver was directly examined and animals imaged at days 7-17 after tumor cell implantation. As predicted, the formation of hepatic malignant foci was markedly suppressed in Cd39-null mice, at all time points examined. To test whether the major impact of Cd39-deletion was upon neovasculature formation or immune responsiveness, adoptive transfer experiments were conducted. Bone marrow transplants (BMT) from Cd39-null or wild type BL/6 mice were placed in lethally irradiated control and/or null mice, in a crossover manner (total n=24 for each group, respectively). Eight weeks postadoptive transfer, melanoma cells were infused via portal vein as before and tumor growth studied. The Cd39-null mice that received wild type BMT mirrored the wild type phenotype with progressive tumor growth observed (n=8 per time point; p=0.015). In contrast, metastases were significantly inhibited in both number and size and ultimately became necrotic in the wild type mice that had received Cd39-null BMT. Conclusions: Bone marrow derived cells mediate the major inhibitory effects of CD39 deletion on tumor growth. Pharmacological inhibition of CD39 may find utility as an adjunct therapy in the management of hepatic malignancy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interleukin-6 (IL-6) plays a crucial role in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). It exerts its cellular effects by a membrane-bound IL-6 receptor (IL-6R), or, alternatively, by forming a complex with the soluble IL-6R (sIL-6R), a process named IL-6 transsignalling. Here we investigate the role of IL-6 transsignalling in myelin basic protein (MBP)-induced EAE in the Lewis rat. In vivo blockade of IL-6 transsignalling by the injection of a specifically designed gp130-Fc fusion protein significantly delayed the onset of adoptively transferred EAE in comparison to control rats injected with PBS or isotype IgG. Histological evaluation on day 3 after immunization revealed reduced numbers of T cells and macrophages in the lumbar spinal cord of gp130-Fc treated rats. At the same time, blockade of IL-6 transsignalling resulted in a reduced expression of vascular cell adhesion molecule-1 on spinal cord microvessels while experiments in cell culture failed to show a direct effect on the regulation of endothelial adhesion molecules. In experiments including active EAE and T cell culture, inhibition of IL-6 transsignalling mildly increased T cell proliferation, but did not change severity of active MBP-EAE or regulate Th1/Th17 responses. We conclude that IL-6 transsignalling may play a role in autoimmune inflammation of the CNS mainly by regulating early expression of adhesion molecules, possibly via cellular networks at the blood-brain barrier.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) is resistant to chemotherapy. We reported that sirolimus, an mTOR inhibitor, has antiangiogenic properties in HCC. Since antiangiogenic therapy may enhance chemotherapy effects, we tested the antitumorigenic properties of sirolimus combined with doxorubicin in experimental HCC. METHODS: Morris Hepatoma (MH) cells were implanted into livers of syngeneic rats. Animals were assigned to sirolimus, pegylated liposomal doxorubicin, both combined or control groups. Tumoral growth was followed by MRI. Antiangiogenic effects were assessed by CD31 immunostaining and capillary tube formation assays. Cell proliferation was monitored in vitro by thymidine incorporation. Expression of p21 and phosphorylated MAPKAP kinase-2 was quantified by immunoblotting. RESULTS: Animals treated with the combination developed smaller tumors with decreased tumor microvessel density compared to animals that received monotherapies. In vitro, inhibition of mTOR further impaired capillary formation in the presence of doxorubicin. Doxorubicin reduced endothelial cell proliferation; inhibition of mTOR accentuated this effect. Doxorubicin stimulated p21 expression and the phosphorylation of MAPKAP kinase-2 in endothelial cells. Addition of mTOR inhibitor down-regulated p21, but did not decrease MAPKAP kinase-2 phosphorylation. CONCLUSIONS: Sirolimus has additive antitumoral and antiangiogenic effects when administered with doxorubicin. These findings offer a rationale for combining mTOR inhibitors with chemotherapy in HCC treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MicroRNAs (miRNA) are negative regulators of gene expression at the posttranscriptional level, which are involved in tumorigenesis. Two miRNAs, miR-15a and miR-16, which are located at chromosome 13q14, have been implicated in cell cycle control and apoptosis, but little information is available about their role in solid tumors. To address this question, we established a protocol to quantify miRNAs from laser capture microdissected tissues. Here, we show that miR-15a/miR-16 are frequently deleted or down-regulated in squamous cell carcinomas and adenocarcinomas of the lung. In these tumors, expression of miR-15a/miR-16 inversely correlates with the expression of cyclin D1. In non-small cell lung cancer (NSCLC) cell lines, cyclins D1, D2, and E1 are directly regulated by physiologic concentrations of miR-15a/miR-16. Consistent with these results, overexpression of these miRNAs induces cell cycle arrest in G(1)-G(0). Interestingly, H2009 cells lacking Rb are resistant to miR-15a/miR-16-induced cell cycle arrest, whereas reintroduction of functional Rb resensitizes these cells to miRNA activity. In contrast, down-regulation of Rb in A549 cells by RNA interference confers resistance to these miRNAs. Thus, cell cycle arrest induced by these miRNAs depends on the expression of Rb, confirming that G(1) cyclins are major targets of miR-15a/miR-16 in NSCLC. Our results indicate that miR-15a/miR-16 are implicated in cell cycle control and likely contribute to the tumorigenesis of NSCLC.