117 resultados para COX-inhibitor
Resumo:
OBJECTIVES: Membrane-targeted application of complement inhibitors may ameliorate ischemia/reperfusion (I/R) injury by directly targeting damaged cells. We investigated whether Mirococept, a membrane-targeted, myristoylated peptidyl construct derived from complement receptor 1 (CR1) could attenuate I/R injury following acute myocardial infarction in pigs. METHODS: In a closed-chest pig model of acute myocardial infarction, Mirococept, the non-tailed derivative APT154, or vehicle was administered intracoronarily into the area at risk 5 min pre-reperfusion. Infarct size, cardiac function and inflammatory status were evaluated. RESULTS: Mirococept targeted damaged vasculature and myocardium, significantly decreasing infarct size compared to vehicle, whereas APT154 had no effect. Cardioprotection correlated with reduced serum troponin I and was paralleled by attenuated local myocardial complement deposition and tissue factor expression. Myocardial apoptosis (TUNEL-positivity) was also reduced with the use of Mirococept. Local modulation of the pro-inflammatory and pro-coagulant phenotype translated to improved left ventricular end-diastolic pressure, ejection fraction and regional wall motion post-reperfusion. CONCLUSIONS: Local modification of a pro-inflammatory and pro-coagulant environment after regional I/R injury by site-specific application of a membrane-targeted complement regulatory protein may offer novel possibilities and insights into potential treatment strategies of reperfusion-induced injury.
Resumo:
OBJECTIVE: To investigate the effects of tyrosine-kinase inhibitors of vascular endothelial growth factor (VECF) and platelet-derived growth factor (PDCF)-receptors on non-malignant tissue and whether they depend upon the stage of vascular maturation. MATERIALS AND METHODS: PTK787/ZK222584 and CGP53716 (VEGF- and PDGF-receptor inhibitor respectively), both alone and combined, were applied on chicken chorioallantoic membrane (CAM). RESULTS: On embryonic day of CAM development (E)8, only immature microvessels, which lack coverage of pericytes, are present: whereas the microvessels on E12 have pericytic coverage. This development was reflected in the expression levels of pericytic markers (alpha-smooth muscle actin, PDGF-receptor beta and desmin), which were found by immunoblotting to progressively increase between E8 and E12. Monotherapy with 2 microg of PTK787/ZK222584 induced significant vasodegeneration on E8, but not on E12. Monotherapy with CGP53716 affected only pericytes. When CGP53716 was applied prior to treatment with 2 microg of PTK787/ZK222584, vasodegeneration occurred also on E12. The combined treatment increased the apoptotic rate. as evidenced by the cDNA levels of caspase-9 and the TUNEL-assay. CONCLUSION: Anti-angiogenic treatment strategies for non-neoplastic disorders should aim to interfere with the maturation stage of the target vessels: monotherapy with VEGF-receptor inhibitor for immature vessels, and combined anti-angiogenic treatment for well developed mature vasculature.
Resumo:
BACKGROUND: Streptococcus (S.) pneumoniae meningitis has a high lethality despite antibiotic treatment. Inflammation is a major pathogenetic factor, which is unresponsive to antibiotics. Therefore adjunctive therapies with antiinflammatory compounds have been developed. TNF484 is a TNF-alpha converting enzyme (TACE) inhibitor and has been found efficacious in experimental meningitis. Toll-like receptor 2 (TLR2) contributes to host response in pneumococcal meningitis by enhancing bacterial clearing and downmodulating inflammation. In this study, TNF484 was applied in mice, which lacked TLR2 and exhibited a strong meningeal inflammation. METHODS: 103 CFU S. pneumoniae serotype 3 was inoculated subarachnoidally into C57BL/6 wild type (wt) mice or TLR2-/-, CD14-/- and CD14-/-/TLR2-/- mice. Severity of disease and survival was followed over 9 days. Response to antibiotics (80 mg/kg ceftriaxone i.p. for 5 days) and/or TACE inhibitor treatment (1 mg/kg s.c. twice daily for 4 days) was evaluated. Animals were sacrificed after 12, 24, and 48 h for analysis of bacterial load in cerebrospinal fluid (CSF) and brain and for TNF and leukocyte measurements in CSF. RESULTS: TLR2-/- mice were significantly sicker than the other mouse strains 24 h after infection. All knockout mice showed higher disease severity after 48 h and died earlier than wt mice. TNF release into CSF was significantly more elevated in TLR2-/- than in the other strains after 24 h. Brain bacterial numbers were significantly higher in all knockout than wt mice after 24 h. Modulation of outcome by antibiotic and TACE inhibitor treatment was evaluated. With antibiotic therapy all wt, CD14-/- and TLR2-/-/CD14-/- mice, but only 79% of TLR2-/- mice, were rescued. TACE inhibitor treatment alone did not rescue, but prolonged survival in wt mice, and in TLR2-/- and CD14-/- mice to the values observed in untreated wt mice. By combined antibiotic and TACE inhibitor treatment 95% of TLR2-/- mice were rescued. CONCLUSION: During pneumococcal meningitis strong inflammation in TLR2-deficiency was associated with incomplete responsiveness to antibiotics and complete response to combined antibiotic and TACE inhibitor treatment. TACE inhibitor treatment offers a promising adjuvant therapeutic strategy in pneumococcal meningitis.
Resumo:
BACKGROUND: A growing number of case reports have described tenofovir (TDF)-related proximal renal tubulopathy and impaired calculated glomerular filtration rates (cGFR). We assessed TDF-associated changes in cGFR in a large observational HIV cohort. METHODS: We compared treatment-naive patients or patients with treatment interruptions > or = 12 months starting either a TDF-based combination antiretroviral therapy (cART) (n = 363) or a TDF-sparing regime (n = 715). The predefined primary endpoint was the time to a 10 ml/min reduction in cGFR, based on the Cockcroft-Gault equation, confirmed by a follow-up measurement at least 1 month later. In sensitivity analyses, secondary endpoints including calculations based on the modified diet in renal disease (MDRD) formula were considered. Endpoints were modelled using pre-specified covariates in a multiple Cox proportional hazards model. RESULTS: Two-year event-free probabilities were 0.65 (95% confidence interval [CI] 0.58-0.72) and 0.80 (95% CI 0.76-0.83) for patients starting TDF-containing or TDF-sparing cART, respectively. In the multiple Cox model, diabetes mellitus (hazard ratio [HR] = 2.34 [95% CI 1.24-4.42]), higher baseline cGFR (HR = 1.03 [95% CI 1.02-1.04] by 10 ml/min), TDF use (HR = 1.84 [95% CI 1.35-2.51]) and boosted protease inhibitor use (HR = 1.71 [95% CI 1.30-2.24]) significantly increased the risk for reaching the primary endpoint. Sensitivity analyses showed high consistency. CONCLUSION: There is consistent evidence for a significant reduction in cGFR associated with TDF use in HIV-infected patients. Our findings call for a strict monitoring of renal function in long-term TDF users with tests that distinguish between glomerular dysfunction and proximal renal tubulopathy, a known adverse effect of TDF.
Resumo:
OBJECTIVE: To investigate predictors of continued HIV RNA viral load suppression in individuals switched to abacavir (ABC), lamivudine (3TC) and zidovudine (ZDV) after successful previous treatment with a protease inhibitor or non-nucleoside reverse transcriptase inhibitor-based combination antiretroviral therapy. DESIGN AND METHODS: An observational cohort study, which included individuals in the Swiss HIV Cohort Study switching to ABC/3TC/ZDV following successful suppression of viral load. The primary endpoint was time to treatment failure defined as the first of the following events: two consecutiveviral load measurements > 400 copies/ml under ABC/3TC/ZDV, one viral load measurement > 400 copies/ml and subsequent discontinuation of ABC/3TC/ZDV within 3 months, AIDS or death. RESULTS: We included 495 individuals; 47 experienced treatment failure in 1459 person-years of follow-up [rate = 3.22 events/100 person-years; 95% confidence interval (95% CI), 2.30-4.14]. Of all failures, 62% occurred in the first year after switching to ABC/3TC/ZDV. In a Cox regression analysis, treatment failure was independently associated with earlier exposure to nucleoside reverse transcriptase inhibitor (NRTI) mono or dual therapy [hazard ratio (HR), 8.02; 95% CI, 4.19-15.35) and low CD4 cell count at the time of the switch (HR, 0.66; 95% CI, 0.51-0.87 by +100 cells/microl up to 500 cells/microl). In patients without earlier exposure to mono or dual therapy, AIDS prior to switch to simplified maintenance therapy was an additional risk factor. CONCLUSIONS: The failure rate was low in patients with suppressed viral load and switch to ABC/3TC/ZDV treatment. Patients with earlier exposure to mono or dual NRTI therapy, low CD4 cell count at time of switch, or AIDS are at increased risk of treatment failure, limiting the use of ABC/3TC/ZDV in these patient groups.
Resumo:
OBJECTIVE: Impaired endothelial function was demonstrated in HIV-infected persons on protease inhibitor (PI)-containing antiretroviral therapy, probably due to altered lipid metabolism. Atazanavir is a PI causing less atherogenic lipoprotein changes. This study determined whether endothelial function improves after switching from other PI to atazanavir. DESIGN: Randomised, observer-blind, treatment-controlled trial. SETTING: Three university-based outpatient clinics. PATIENTS: 39 HIV-infected persons with suppressed viral replication on PI-containing regimens and fasting low-density lipoprotein (LDL)-cholesterol greater than 3 mmol/l. INTERVENTION: Patients were randomly assigned to continue the current PI or change to unboosted atazanavir. MAIN OUTCOME MEASURES: Endpoints at week 24 were endothelial function assessed by flow-mediated dilation (FMD) of the brachial artery, lipid profiles and serum inflammation and oxidative stress parameters. RESULTS: Baseline characteristics and mean FMD values of the two treatment groups were comparable (3.9% (SD 1.8) on atazanavir versus 4.0% (SD 1.5) in controls). After 24 weeks' treatment, FMD decreased to 3.3% (SD 1.4) and 3.4% (SD 1.7), respectively (all p = ns). Total cholesterol improved in both groups (p<0.0001 and p = 0.01, respectively) but changes were more pronounced on atazanavir (p = 0.05, changes between groups). High-density lipoprotein and triglyceride levels improved on atazanavir (p = 0.03 and p = 0.003, respectively) but not in controls. Serum inflammatory and oxidative stress parameters did not change; oxidised LDL improved significantly in the atazanavir group. CONCLUSIONS: The switch from another PI to atazanavir in treatment-experienced patients did not result in improvement of endothelial function despite significantly improved serum lipids. Atherogenic lipid profiles and direct effects of antiretroviral drugs on the endothelium may affect vascular function. Trial registration number: NCT00447070.
Resumo:
BACKGROUND: Rapamycines, sirolimus (SRL) and everolimus (ERL), are proliferation signal inhibitors (PSIs). PSI therapy often leads to edema. We hypothesized that increased oxidative stress in response to PSIs may modulate the expression of vascular endothelial (VE)-cadherin on endothelial cells (ECs) and, subsequently, vascular permeability, which in turn may be involved in the development of edema. METHODS: Experiments were performed on human umbilical vein ECs (HUVECs). Oxidative stress was measured by dichlorofluorescein-diacetate. Expression of VE-cadherin was evaluated by immunofluorescent staining and western blot analysis. Endothelial "permeability" was assessed using a transwell model. RESULTS: SRL and ERL, at concentrations of 1, 10 and 100 nmol/liter, enhanced oxidative stress (SRL: 24 +/- 12%, 29 +/- 9%, 41 +/- 13% [p < 0.05, in all three cases]; ERL: 13 +/- 10%, 27 +/- 2%, 40 +/- 12% [p < 0.05, in the latter two cases], respectively) on HUVECs, which was inhibited by the anti-oxidant, N-acetyl-cysteine (NAC) and, to a lesser extent, by the specific inhibitor of nitric oxide synthase, N-Omega-nitro-L-arginine methylester. By the use of NAC, VE-cadherin expression remained comparable with control, according to both immunocytochemistry and western blot analysis. Permeability was significantly increased by SRL and ERL at 100 nmol/liter (29.5 +/- 6.4% and 33.8 +/- 4.2%, respectively); however, co-treatment with NAC abrogated the increased permeability. CONCLUSIONS: EC homeostasis, as indicated by VE-cadherin expression, may be damaged by SRL and ERL, but resolved by the anti-oxidant NAC.
Resumo:
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.
Resumo:
Complement is an essential part of the innate immune system and plays a crucial role in organ and islet transplantation. Its activation, triggered for example by ischemia/reperfusion (I/R), significantly influences graft survival, and blocking of complement by inhibitors has been shown to attenuate I/R injury. Another player of innate immunity are the dendritic cells (DC), which form an important link between innate and adaptive immunity. DC are relevant in the induction of an immune response as well as in the maintenance of tolerance. Modulation or inhibition of both components, complement and DC, may be crucial to improve the clinical outcome of solid organ as well as islet transplantation. Low molecular weight dextran sulfate (DXS), a well-known complement inhibitor, has been shown to prevent complement-mediated damage of the donor graft endothelium and is thus acting as an endothelial protectant. In this review we will discuss the evidence for this cytoprotective effect of DXS and also highlight recent data which show that DXS inhibits the maturation of human DC. Taken together the available data suggest that DXS may be a useful reagent to prevent the activation of innate immunity, both in solid organ and islet transplantation.
Resumo:
BACKGROUND: The aim of this study was to explore the predictive value of longitudinal self-reported adherence data on viral rebound. METHODS: Individuals in the Swiss HIV Cohort Study on combined antiretroviral therapy (cART) with RNA <50 copies/ml over the previous 3 months and who were interviewed about adherence at least once prior to 1 March 2007 were eligible. Adherence was defined in terms of missed doses of cART (0, 1, 2 or >2) in the previous 28 days. Viral rebound was defined as RNA >500 copies/ml. Cox regression models with time-independent and -dependent covariates were used to evaluate time to viral rebound. RESULTS: A total of 2,664 individuals and 15,530 visits were included. Across all visits, missing doses were reported as follows: 1 dose 14.7%, 2 doses 5.1%, >2 doses 3.8% taking <95% of doses 4.5% and missing > or =2 consecutive doses 3.2%. In total, 308 (11.6%) patients experienced viral rebound. After controlling for confounding variables, self-reported non-adherence remained significantly associated with the rate of occurrence of viral rebound (compared with zero missed doses: 1 dose, hazard ratio [HR] 1.03, 95% confidence interval [CI] 0.72-1.48; 2 doses, HR 2.17, 95% CI 1.46-3.25; >2 doses, HR 3.66, 95% CI 2.50-5.34). Several variables significantly associated with an increased risk of viral rebound irrespective of adherence were identified: being on a protease inhibitor or triple nucleoside regimen (compared with a non-nucleoside reverse transcriptase inhibitor), >5 previous cART regimens, seeing a less-experienced physician, taking co-medication, and a shorter time virally suppressed. CONCLUSIONS: A simple self-report adherence questionnaire repeatedly administered provides a sensitive measure of non-adherence that predicts viral rebound.