90 resultados para CD45 antigen
Resumo:
OX7 monoclonal antibody F((ab')2) fragments directed against Thy1.1 antigen can be used for drug targeting by coupling to the surface of drug-loaded liposomes. Such OX7-conjugated immunoliposomes (OX7-IL) were used recently for drug delivery to rat glomerular mesangial cells, which are characterized by a high level of Thy1.1 antigen expression. In the present study, the relationship between OX7-IL tissue distribution and target Thy1.1 antigen localization in different organs in rat was investigated. Western blot and immunohistofluorescence analysis revealed a very high Thy1.1 expression in brain cortex and striatum, thymus and renal glomeruli. Moderate Thy1.1 levels were observed in the collecting ducts of kidney, lung tissue and spleen. Thy1.1 was not detected in liver and heart. There was a poor correlation between Thy1.1 expression levels and organ distribution of fluorescence- or (14)C-labeled OX7-IL. The highest overall organ density of OX7-IL was observed in the spleen, followed by lung, liver and kidney. Heart and brain remained negative. With respect to intra-organ distribution, a localized and distinct signal was observed in renal glomerular mesangial cells only. As a consequence, acute pharmacological (i.e. toxic) effects of doxorubicin-loaded OX7-IL were limited to renal glomeruli. The competition with unbound OX7 monoclonal antibody F((ab')2) fragments demonstrated that the observed tissue distribution and acute pharmacological effects of OX7-IL were mediated specifically by the conjugated OX7 antibody. It is concluded that both the high target antigen density and the absence of endothelial barriers are needed to allow for tissue-specific accumulation and pharmacological effects of OX7-IL. The liposomal drug delivery strategy used is therefore specific toward renal glomeruli and can be expected to reduce the risk of unwanted side effects in other tissues.
Resumo:
OBJECTIVE: This study tested whether feelings of personal control over one's life circumstances (i.e., personal mastery) would attenuate the relations between stress (i.e., negative life events and caregiving distress) and Plasminogen Activator Inhibitor (PAI)-1 antigen, an inhibitor of fibrinolysis implicated in the development of cardiovascular disease. DESIGN: Seventy-one spousal dementia caregivers were assessed for plasma levels of PAI-1 antigen, negative life events, caregiver distress, and feelings of personal mastery. Regression analysis was used to determine if personal mastery moderated the relations between stress (i.e., life stress and caregiving distress) and PAI-1 antigen levels. MAIN OUTCOME MEASURE: Plasminogen activator inhibitor (PAI)-1 antigen in plasma. RESULTS: After controlling for other factors associated with PAI-1 antigen levels, negative life events were positively associated with plasma PAI-1 antigen concentrations in participants low in personal mastery (beta = .31; p = .050) but not in individuals high in personal mastery (beta = .22; p = .184). The moderating effect of mastery on the relations between caregiving distress and PAI-1 antigen did not reach statistical significance (p = .091). CONCLUSIONS: These data suggest that mastery may protect individuals from some of the alterations in hemostatic factors that have been linked to cardiovascular risk.
Resumo:
Cathepsins are required for the processing of antigens in order to make them suitable for loading on major histocompatibility complex (MHC) class II molecules, for subsequent presentation to CD4(+) T cells. It was shown that antigen processing in monocyte-derived dendritic cells (DC), a commonly used DC model, is different from that of primary human DC. Here, we report that the two subsets of human myeloid DC (mDC) and plasmacytoid DC (pDC) differ in their cathepsin distribution. The serine protease cathepsin G (CatG) was detected in mDC1, mDC2, pDC, cortical thymic epithelial cells (cTEC) and high levels of CatG were determined in pDC. To address the role of CatG in the processing and presentation of a Multiple Sclerosis-associated autoantigen myelin basic protein (MBP), we used a non-CatG expressing fibroblast cell line and fibroblasts, which were preloaded with purified CatG. We find that preloading fibroblasts with CatG results in a decrease of MBP84-98-specific T cell proliferation, when compared to control cells. Our data suggest a different processing signature in primary human antigen-presenting cells and CatG may be of functional importance.
Resumo:
CD4(+) T cells play a central role in the pathogenesis of multiple sclerosis (MS). Generation, activation and effector function of these cells crucially depends on their interaction with MHC II-peptide complexes displayed by antigen presenting cells (APC). Processing and presentation of self antigens by different APC therefore influences the disease course at all stages. Selection by thymic APC leads to the generation of autoreactive T cells, which can be activated by peripheral APC. Reactivation by central nervous system APC leads to the initiation of the inflammatory response resulting in demyelination. In this review we will focus on how MHC class II antigenic epitopes are created by different APC from the thymus, the periphery and from the brain, and will discuss the relevance of the balance between creation and destruction of such epitopes in the context of MS. A solid understanding of these processes offers the possibility for designing future therapeutic strategies.
Identification of small Sca-1(+), Lin(-), CD45(-) multipotential cells in the neonatal murine retina
Resumo:
OBJECTIVE: Bone marrow contains a subset of stem cells that give rise to nonhematopoietic lineages. These nonhematopoietic stem cells appear heterogeneous and contain cells committed to mesenchymal and endothelial lineages, as well as more primitive multipotential cells resembling progenitors of germ cells and very small embryonic/epiblast-like stem cells (VSELs). Nonhematopoietic stem cells can be mobilized from the bone marrow in response to tissue injury, and cells with similar properties have been found in cord blood and normal adult organs. However, the relationship between bone marrow cells and these adult organ stem cells is still unclear. The differentiation potential of some adult stem cells is organ-restricted, but other populations appear to retain multipotential capacity. MATERIALS AND METHODS: A population of small Sca-1(+), lineage-negative (Lin(-)), CD45(-) cells resembling VSELs were isolated from neonatal mouse retina by cell sorting. Differentiation of the cells in culture was achieved by exposure to embryonic stem cell differentiation protocols. RESULTS: VSEL-like cells comprise 1.5% of the neonatal mouse retina. They remain quiescent during retinal differentiation, and thus they do not contribute to normal retinal development. However, they display eye cell differentiation potential in culture and they are also multipotential and can give rise to cells representative of all three embryonic layers. CONCLUSIONS: The neonatal retina is an abundant postnatal source of multipotential VSEL-like cells that can differentiate in culture into a variety of lineages.
Resumo:
Many hepatitis C virus (HCV) infections worldwide are with the genotype 1 and 3 strains of the virus. Cellular immune responses are known to be important in the containment of HCV genotype 1 infection, and many genotype 1 T cell targets (epitopes) that are presented by host human leukocyte antigens (HLAs) have been identified. In contrast, there is almost no information known about the equivalent responses to genotype 3. Immune escape mechanisms used by HCV include the evolution of viral polymorphisms (adaptations) that abrogate this host-viral interaction. Evidence of HCV adaptation to HLA-restricted immune pressure on HCV can be observed at the population level as viral polymorphisms associated with specific HLA types. To evaluate the escape patterns of HCV genotypes 1 and 3, we assessed the associations between viral polymorphisms and specific HLA types from 187 individuals with genotype 1a and 136 individuals with genotype 3a infection. We identified 51 HLA-associated viral polymorphisms (32 for genotype 1a and 19 for genotype 3a). Of these putative viral adaptation sites, six fell within previously published epitopes. Only two HLA-associated viral polymorphisms were common to both genotypes. In the remaining sites with HLA-associated polymorphisms, there was either complete conservation or no significant HLA association with viral polymorphism in the alternative genotype. This study also highlights the diverse mechanisms by which viral evasion of immune responses may be achieved and the role of genotype variation in these processes. CONCLUSION: There is little overlap in HLA-associated polymorphisms in the nonstructural proteins of HCV for the two genotypes, implying differences in the cellular immune pressures acting on these viruses and different escape profiles. These findings have implications for future therapeutic strategies to combat HCV infection, including vaccine design.
Resumo:
In hormone refractory prostatic carcinoma (HRPCa), the majority of patients have bone metastases only, which are by definition non-measurable. This makes objective evaluation of chemotherapeutic agents difficult. Prostate specific antigen (PSA) as a dynamic model was analyzed as potential auxiliary end point in HRPCa.
Resumo:
Echinococcosis is a worldwide zoonotic parasitic disease of humans and various herbivorous domestic animals (intermediate hosts) transmitted by the contact with wild and domestic carnivores (definitive hosts), mainly foxes and dogs. Recently, a vaccine was developed showing high levels of protection against one parasite haplotype (G1) of Echinococcus granulosus, and its potential efficacy against distinct parasite variants or species is still unclear. Interestingly, the EG95 vaccine antigen is a secreted glycosylphosphatydilinositol (GPI)-anchored protein containing a fibronectin type III domain, which is ubiquitous in modular proteins involved in cell adhesion. EG95 is highly expressed in oncospheres, the parasite life cycle stage which actively invades the intermediate hosts. After amplifying and sequencing the complete CDS of 57 Echinococcus isolates belonging to 7 distinct species, we uncovered a large amount of genetic variability, which may influence protein folding. Two positively selected sites are outside the vaccine epitopes, but are predicted to alter protein conformation. Moreover, phylogenetic analyses indicate that EG95 isoform evolution is convergent with regard to the number of beta-sheets and alpha-helices. We conclude that having a variety of EG95 isoforms is adaptive for Echinococcus parasites, in terms of their ability to invade different hosts, and we propose that a mixture of isoforms could possibly maximize vaccine efficacy.
Resumo:
In this protocol we provide a method to isolate dendritic cells (DC) and epithelial cells (TEC) from the human thymus. DC and TEC are the major antigen presenting cell (APC) types found in a normal thymus and it is well established that they play distinct roles during thymic selection. These cells are localized in distinct microenvironments in the thymus and each APC type makes up only a minor population of cells. To further understand the biology of these cell types, characterization of these cell populations is highly desirable but due to their low frequency, isolation of any of these cell types requires an efficient and reproducible procedure. This protocol details a method to obtain cells suitable for characterization of diverse cellular properties. Thymic tissue is mechanically disrupted and after different steps of enzymatic digestion, the resulting cell suspension is enriched using a Percoll density centrifugation step. For isolation of myeloid DC (CD11c(+)), cells from the low-density fraction (LDF) are immunoselected by magnetic cell sorting. Enrichment of TEC populations (mTEC, cTEC) is achieved by depletion of hematopoietic (CD45(hi)) cells from the low-density Percoll cell fraction allowing their subsequent isolation via fluorescence activated cell sorting (FACS) using specific cell markers. The isolated cells can be used for different downstream applications.
Resumo:
The efficacy of biological therapeutics against cartilage degradation in osteoarthritis is restricted by the limited transport of macromolecules through the dense, avascular extracellular matrix. The availability of biologics to cell surface and matrix targets is limited by steric hindrance of the matrix, and the microstructure of matrix itself can be dramatically altered by joint injury and the subsequent inflammatory response. We studied the transport into cartilage of a 48 kDa anti-IL-6 antigen binding fragment (Fab) using an in vitro model of joint injury to quantify the transport of Fab fragments into normal and mechanically injured cartilage. The anti-IL-6 Fab was able to diffuse throughout the depth of the tissue, suggesting that Fab fragments can have the desired property of achieving local delivery to targets within cartilage, unlike full-sized antibodies which are too large to penetrate beyond the cartilage surface. Uptake of the anti-IL-6 Fab was significantly increased following mechanical injury, and an additional increase in uptake was observed in response to combined treatment with TNFα and mechanical injury, a model used to mimic the inflammatory response following joint injury. These results suggest that joint trauma leading to cartilage degradation can further alter the transport of such therapeutics and similar-sized macromolecules.
Resumo:
The method of isolation of bone marrow (BM) mesenchymal stem/stromal cells (MSCs) is a limiting factor in their study and therapeutic use. MSCs are typically expanded from BM cells selected on the basis of their adherence to plastic, which results in a heterogeneous population of cells. Prospective identification of the antigenic profile of the MSC population(s) in BM that gives rise to cells with MSC activity in vitro would allow the preparation of very pure populations of MSCs for research or clinical use. To address this issue, we used polychromatic flow cytometry and counterflow centrifugal elutriation to identify a phenotypically distinct population of mesenchymal stem/progenitor cells (MSPCs) within human BM. The MSPC activity resided within a population of rare, small CD45⁻CD73⁺CD90⁺CD105⁺ cells that lack CD44, an antigen that is highly expressed on culture-expanded MSCs. In culture, these MSPCs adhere to plastic, rapidly proliferate, and acquire CD44 expression. They form colony forming units-fibroblast and are able to differentiate into osteoblasts, chondrocytes, and adipocytes under defined in vitro conditions. Their acquired expression of CD44 can be partially downregulated by treatment with recombinant human granulocyte-colony stimulating factor, a response not found in BM-MSCs derived from conventional plastic adherence methods. These observations indicate that MSPCs within human BM are rare, small CD45⁻CD73⁺CD90⁺CD105⁺ cells that lack expression of CD44. These MSPCs give rise to MSCs that have phenotypic and functional properties that are distinct from those of BM-MSCs purified by plastic adherence.
Resumo:
Equine recurrent airway obstruction (RAO) is an inflammatory, obstructive airway disease induced by exposure of susceptible horses to inhaled organic dust particles. The immunological process underlying RAO is still unclear. Previous studies have shown that RAO is linked to the Interleukin-4 receptor (IL-4R) gene in one Warmblood family (F1), but not in another (F2). It has also been shown that in F1, but not in F2, RAO is associated with resistance against parasites, suggesting that this association may have an immuno-genetic basis. Therefore, we hypothesized that the T helper (h)1/Th2/regulatory (Treg) cytokine profiles of RAO-associated antigen- and parasite-antigen-stimulated peripheral blood mononuclear cells (PBMC) differ between RAO-affected and healthy horses depending on their genetic background. In our study, PBMC from 17 RAO-affected and 14 healthy control horses of F1 and F2 were stimulated for 24h with antigens relevant to RAO [hay dust extract (HDE), Aspergillus fumigatus extract (AFE) and lipopolysaccharids (LPS)]; cyathostomin extract (CE) and recombinant cyathostomin antigen (RCA) or with concanavalin A (ConA). Total mRNA levels of IL-4, IL-4R, IL-13, interferon (INF)-γ and IL-10 were examined by qRT-PCR. Stimulation with either HDE or RCA resulted in significant differences in IL-4R mRNA levels between RAO-affected and control horses in F1, but not in F2. For IL-10 mRNA expression, a significant difference between RAO-affected and control horses in F1 but not in F2 was observed only following stimulation with HDE. In contrast to HDE, stimulation with CE resulted in a significant difference of IL-10 mRNA expression level between RAO-affected horses of F2 and healthy horses of F1. No significant differences were detected upon stimulation with any of the other challenge agents. These findings indicate that the immunological response, specifically IL-4R expression, in response to hay dust and cyathostomin antigens, differs between RAO-affected and healthy horses depending on their genetic background. This study shows that analysis of PBMC reveals systemic changes associated with RAO and helps to elucidate immunological pathways involved in this disease.