61 resultados para CASPASE-3


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Einleitung: Bandscheiben wirken als Schockabsorbierer in der Wirbelsäule und auf diese wirken meistens komplexe Kräfte, zusammengesetzt aus Kompression, Torsion und Flexion. Die biomechanishe Umgebung einer Bandscheibe ist denn auch geprägt von komplexen Belastungen. Die Forschung über die in vitro Bandscheibenbiologie hat sich bisher um die axiale Kompression konzentriert, wobei die Bedeutung von Torsion und insbesondere dem Zusammenspiel von Kompression und Torsion (="Twisting") praktisch noch nie untersucht wurde an lebenden Organkultur-Explantaten. Wir präsentieren neue mechanobiologische Daten über die Überlebenswahrscheinlichkeit von Bandscheibenzellen kultiviert in einem neuartigen, kompakten Design eines bi-axialen Bioreaktors, um die Bedeutung von Kompression und Torsion zu verstehen. Material/Methode: Bovine Schwanzbandscheiben mit den Endplatten wurden isoliert wie bereits beschrieben [2] und mechanische Belastung wurde angewendet mit einem 2 DoF Bioreaktor für 14 Tage [3]. Die Bandscheiben wurden in verschiedene Belastungsgruppen eingeteilt: 1) Keine Belastung (NL), 2) zyklische Kompression (CC) [8h: axiale Kompression mit 0.6 ± 0.2 MPa, 0.2 Hz], 3) zyklische Torsion (CT) [8h: ± 2° torsion, 0.2 Hz, 0.2 MPa compression], 4) zyklische Kompression und Torsion (CCT) [8h: 0.6 ± 0.2 MPa, 0.2 Hz & ± 2° torsion, 0.2 Hz]. Das Bandscheibengewebe wurde mit LIVE/DEAD gefärbt und miteinem konfokalen Mikroskop visualisiert um die Überlebensrate zu bestimmen. Zell Apoptosis wurde quantifiziert mit einem Caspase 3/7 Kit normalisiert zum totalen Proteingehalt (Bradford). Relative Gen-Expression von wichtigen Genen für die Bandscheibe wurde bestimmt von anabolischen, katabolischen und inflammatorischen Genen mittels real-time RT-PCR. Die Morphologie der Bandscheibenzellen wurde mittels Histologie bestimmt. Ergebnisse: Die Resultate zeigten einen starken Abfall der Zellüberlebenswahrscheinlichkeit im Zentrum der Bandscheiben, dem Nulceus Pulposus (NP), i.e. 10%, in der Gruppe mit CCT. Hingegen die Überlebenswahrscheinlichkeit im Annulus fibrosus (AF) war stabilisiert bei über 60% im NP und im AF in allen anderen Gruppen (Fig 1). Apoptotische Aktivität war statistisch signifikant erhöht in der CC-Gruppe, aber nicht in der CCT-Gruppe, was die Vermutung nahe legt, dass der erhöhte Zellverlust im NP nicht mit Apoptose sondern mit Nekrose erklärt werden kann. Die Gen Expression der anabolischen Gene COL1, COL2 und Biglycan war signifikant erhöht im AF in der CCT Gruppe, ebenfalls waren Remodeling-Gene angeschaltet wie ADAMTS4 und MMP-13 in der CCT Gruppe (Fig. 2). Der Glykosaminoglykan (GAG) Gehalt war generell im AF erhöht in den Gruppen unter mechanischer Belastung, jedoch nicht statistisch signifikant. Schlussfolgerung: Zyklische Torsion kombiniert mit zyklischer Kompression waren in dieser Studie erfolgreich und nach unserem besten Wissen zum ersten Mal an Bandscheibenexplantaten in einer 14- tägigen Organkultur angewendet worden in einem dafür speziell konzipierten Bioreaktor. Die Resultezeigten überraschend einen negativen Effekt bei physiologischen Parametern, was die Belastung (0.6MPa ± 0.2MPa) und die Torsion (± 2°) angeht. Dieser negative Effekt des "Twistings" auf die Überlebenswahrscheinlichkeit der Zellen war jedoch nur regional im NP von Bedeutung, wohingegen im AF keine Effekte zu detektieren waren.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cannabinoids are implicated in the control of cell proliferation, but little is known about the role of the endocannabinoid system in human malignant melanoma. This study was aimed at characterizing the in vitro antitumor activity of anandamide (AEA) in A375 melanoma cells. The mRNA expression of genes that code for proteins involved in the metabolism and in the mechanism of AEA action was assessed by RT-PCR. Cell viability was tested using WST-1 assay and the apoptotic cell death was determined by measuring caspase 3/7 activities. A375 cells express high levels of fatty acid amide hydrolase (FAAH), cyclooxygenase (COX)-2, cannabinoid receptor 1 (CB1), transient receptor potential cation channel subfamily V member 1 (TRPV1) and G-protein-coupled receptor 55 (GPR55) genes. AEA induced a concentration-dependent cytotoxicity with an IC50 of 5.8±0.7 µM and such an effect was associated to a caspase-dependent apoptotic pathway. AEA cytotoxicity was potentiated by FAAH inhibition (2-fold increase, p<0.05) and mitigated by COX-2 or lipoxygenase (LOX) inhibition (5- and 3-fold decrease, respectively; p<0.01). Blocking CB1 receptors partially decreased AEA cytotoxicity, whereas selective antagonism on the TRPV1 barely affected the mechanism of AEA action. Finally, methyl-β-cyclodextrin, a membrane cholesterol depletory, completely reversed the cytotoxicity induced by the selective GPR55 agonist, O-1602, and AEA. Overall, these findings demonstrate that AEA induces cytotoxicity against human melanoma cells in the micromolar range of concentrations through a complex mechanism, which involves COX-2 and LOX-derived product synthesis and CB1 activation. Lipid raft modulation, probably linked to GPR55 activation, might also have a role.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca(2+)]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis ("necroptosis").

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cattle persistently infected with a noncytopathic Bovine viral diarrhea virus (BVDV) are at risk of developing fatal "mucosal disease" (MD). The authors investigated the role of various apoptosis pathways in the pathogenesis of lesions in animals suffering from MD. Therefore, they compared the expression of caspase-3, caspase-8, caspase-9, and Bcl-2L1 (Bcl-x) in tissues of 6 BVDV-free control animals, 7 persistently infected (PI) animals that showed no signs of MD (non-MD PI animals), and 11 animals with MD and correlated the staining with the localization of mucosal lesions. Caspase-3 and -9 staining were markedly stronger in MD cases and were associated with mucosal lesions, even though non-MD PI animals and negative controls also expressed caspase-9. Conversely, caspase-8 was not elevated in any of the animals analyzed. Interestingly, Bcl-x also colocalized with mucosal lesions in the MD cases. However, Bcl-x was similarly expressed in tissues from all 3 groups, and thus, its role in apoptosis needs to be clarified. This study clearly illustrates ex vivo that the activation of the intrinsic, but not the extrinsic, apoptosis pathway is a key element in the pathogenesis of MD lesions observed in cattle persistently infected with BVDV. However, whether direct induction of apoptosis in infected cells or indirect effects induced by the virus are responsible for the lesions observed remains to be established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMS In colorectal cancer (CRC), tumour buds represent an aggressive cell type at the invasive front with apparently low proliferation. The aim of this study was to determine proliferation and apoptotic rates of buds in comparison to tumour centre, front and mucosa. METHODS AND RESULTS Whole tissue sections from 188 CRC patients underwent immunohistochemistry for Ki67. Ten high-power fields (HPFs) were evaluated in mucosa, tumour centre, tumour front and tumour buds (total = 40 HPFs/case). Caspase-3 and M30 immunohistochemistry were performed on a multipunch tissue microarray from the same cohort. Ki67, caspase-3 and M30 immunoreactivity were correlated with outcome. The average percentage of cells showing Ki67 positivity was 5.2% in mucosa, and was not significantly different between the centre and front of the tumour (38.2% and 34.9%; P < 0.0001); 0.3% of buds showed Ki67 positivity (P < 0.0001). Caspase-3 expression was similar in mucosa, tumour centre and tumour front, but lower in tumour buds (<0.1%; P < 0.0001). M30 staining in buds was decreased (0.01%; P < 0.0001) in comparison to other areas. Ki67 positivity in buds was detrimental to survival in univariate (P = 0.0352) and multivariate (P = 0.0355) analysis. Caspase-3-positive tumours showed better outcome than negative tumours (P = 0.0262); but tumours with caspase-3-positive buds showed a worse outcome than those with caspase-3-negative buds (P = 0.0235). CONCLUSIONS Ki67, caspase-3 and M30 staining is absent in most tumour buds, suggesting decreased proliferation and apoptosis. However, the fact that Ki67 and caspase-3 immunoreactivity was associated with unfavourable prognosis points to a heterogeneous population of tumour buds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic hepatitis occurs when effector lymphocytes are recruited to the liver from blood and retained in tissue to interact with target cells, such as hepatocytes or bile ducts (BDs). Vascular cell adhesion molecule 1 (VCAM-1; CD106), a member of the immunoglobulin superfamily, supports leukocyte adhesion by binding a4b1 integrins and is critical for the recruitment of monocytes and lymphocytes during inflammation. We detected VCAM-1 on cholangiocytes in chronic liver disease (CLD) and hypothesized that biliary expression of VCAM-1 contributes to the persistence of liver inflammation. Hence, in this study, we examined whether cholangiocyte expression of VCAM-1 promotes the survival of intrahepatic a4b1 expressing effector T cells. We examined interactions between primary human cholangiocytes and isolated intrahepatic T cells ex vivo and in vivo using the Ova-bil antigen-driven murine model of biliary inflammation. VCAM-1 was detected on BDs in CLDs (primary biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and chronic hepatitis C), and human cholangiocytes expressed VCAM-1 in response to tumor necrosis factor alpha alone or in combination with CD40L or interleukin-17. Liver-derived T cells adhered to cholangiocytes in vitro by a4b1, which resulted in signaling through nuclear factor kappa B p65, protein kinase B1, and p38 mitogen-activated protein kinase phosphorylation. This led to increased mitochondrial B-cell lymphoma 2 accumulation and decreased activation of caspase 3, causing increased cell survival. We confirmed our findings in a murine model of hepatobiliary inflammation where inhibition of VCAM-1 decreased liver inflammation by reducing lymphocyte recruitment and increasing CD8 and T helper 17 CD4 Tcell survival. Conclusions: VCAM-1 expression by cholangiocytes contributes to persistent inflammation by conferring a survival signal to a4b1 expressing proinflammatory T lymphocytes in CLD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Brain-derived neurotrophic factor (BDNF) blocks activation of caspase-3, reduces translocation of apoptosis-inducing factor (AIF), attenuates excitotoxicity of glutamate, and increases antioxidant enzyme activities. The mechanisms of neuroprotection suggest that BDNF may be beneficial in bacterial meningitis. METHODS To assess a potentially beneficial effect of adjuvant treatment with BDNF in bacterial meningitis, 11-day-old infant rats with experimental meningitis due to Streptococcus pneumoniae or group B streptococci (GBS) were randomly assigned to receive intracisternal injections with either BDNF (3 mg/kg) or equal volumes (10 mu L) of saline. Twenty-two hours after infection, brains were analyzed, by histomorphometrical examination, for the extent of cortical and hippocampal neuronal injury. RESULTS Compared with treatment with saline, treatment with BDNF significantly reduced the extent of 3 distinct forms of brain cell injury in this disease model: cortical necrosis in meningitis due to GBS (median, 0.0% [range, 0.0%-33.7%] vs. 21.3% [range, 0.0%-55.3%]; P<.03), caspase-3-dependent cell death in meningitis due to S. pneumoniae (median score, 0.33 [range, 0.0-1.0] vs. 1.10 [0.10-1.56]; P<.05), and caspase-3-independent hippocampal cell death in meningitis due to GBS (median score, 0 [range, 0-2] vs. 0.88 [range, 0-3.25]; P<.02). The last form of injury was associated with nuclear translocation of AIF. CONCLUSION BDNF efficiently reduces multiple forms of neuronal injury in bacterial meningitis and may hold promise as adjunctive therapy for this disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neurons of the hippocampal dentate gyrus selectively undergo programmed cell death in patients suffering from bacterial meningitis and in experimental models of pneumococcal meningitis in infant rats. In the present study, a membrane-based organotypic slice culture system of rat hippocampus was used to test whether this selective vulnerability of neurons of the dentate gyrus could be reproduced in vitro. Apoptosis was assessed by nuclear morphology (condensed and fragmented nuclei), by immunochemistry for active caspase-3 and deltaC-APP, and by proteolytic caspase-3 activity. Co-incubation of the cultures with live pneumococci did not induce neuronal apoptosis unless cultures were kept in partially nutrient-deprived medium. Complete nutrient deprivation alone and staurosporine independently induced significant apoptosis, the latter in a dose-response way. In all experimental settings, apoptosis occurred preferentially in the dentate gyrus. Our data demonstrate that factors released by pneumococci per se failed to induce significant apoptosis in vitro. Thus, these factors appear to contribute to a multifactorial pathway, which ultimately leads to neuronal apoptosis in bacterial meningitis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial meningitis causes neurological sequelae in up to 50% of survivors. Two pathogens known for their propensity to cause severe neurological damage are Streptococcus pneumoniae and group B streptococci. Some forms of neuronal sequelae, such as learning and memory deficits, have been associated with neuronal injury in the hippocampus. To learn more about hippocampal injury in meningitis, we performed a comparative study in bacterial meningitis due to S. pneumoniae and group B streptococcus, in which 11-day-old infant rats were infected intracisternally with either of the two pathogens. Histopathological examination of the neuronal injury in the dentate gyrus of the hippocampus showed that S. pneumoniae caused predominantly classical apoptotic cell death. Cells undergoing apoptosis were located only in the subgranular zone and stained positive for activated caspase-3 and TUNEL. Furthermore, dividing progenitor cells seemed particularly sensitive to this form of cell death. Group B streptococcus was mainly responsible for a caspase-3-independent (and TUNEL-negative) form of cell death. Compared with the morphological features found in apoptosis (e.g., apoptotic bodies), this form of neuronal death was characterized by clusters of uniformly shrunken cells. It affected the dentate gyrus throughout the blade, showing no preferences for immature or mature neurons. Thus, depending on the infecting agent, bacterial meningitis causes two distinct forms of cell injury in the dentate gyrus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE To describe the presence and amount of apoptotic ligamentous cells in different areas of partially ruptured canine cranial cruciate ligaments (prCCLs) and to compare these findings with apoptosis of ligamentous cells in totally ruptured cranial cruciate ligaments (trCCLs). ANIMALS 20 dogs with prCCLs and 14 dogs with trCCLs. PROCEDURES Dogs with prCCLs or trCCLs were admitted to the veterinary hospital for stifle joint treatment. Biopsy specimens of the intact area of prCCLs (group A) and the ruptured area of prCCLs (group B) as well as specimens from trCCLs (group C) were harvested during arthroscopy. Caspase-3 and poly (ADP-ribose) polymerase (PARP) detection were used to detect apoptotic ligamentous cells by immunohistochemistry. RESULTS No difference was found in the degree of synovitis or osteophytosis between prCCLs and trCCLs. No difference was found in degenerative changes in ligaments between groups A and B. A substantial amount of apoptotic cells could be found in > 90% of all stained slides. A correlation (r(s) = 0.71) was found between the number of caspase-3-and PARP-positive cells. No significant difference was found in the amount of apoptotic cells among the 3 groups. No significant correlation could be detected between the degree of synovitis and apoptotic cells or osteophyte production and apoptotic cells. CONCLUSIONS AND CLINICAL RELEVANCE The lack of difference between the 3 groups indicates that apoptosis could be a factor in the internal disease process leading to CCL rupture and is not primarily a consequence of the acute rupture of the ligament.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Purpose Ceramide kinase (CerK) catalyzes the generation of ceramide-1-phosphate which may regulate various cellular functions, including inflammatory reactions and cell growth. Here, we studied the effect of a recently developed CerK inhibitor, NVP-231, on cancer cell proliferation and viability and investigated the role of cell cycle regulators implicated in these responses. Experimental Approach The breast and lung cancer cell lines MCF-7 and NCI-H358 were treated with increasing concentrations of NVP-231 and DNA synthesis, colony formation and cell death were determined. Flow cytometry was performed to analyse cell cycle distribution of cells and Western blot analysis was used to detect changes in cell cycle regulator expression and activation. Key Results In both cell lines, NVP-231 concentration-dependently reduced cell viability, DNA synthesis and colony formation. Moreover it induced apoptosis, as measured by increased DNA fragmentation and caspase-3 and caspase-9 cleavage. Cell cycle analysis revealed that NVP-231 decreased the number of cells in S phase and induced M phase arrest with an increased mitotic index, as determined by increased histone H3 phosphorylation. The effect on the cell cycle was even more pronounced when NVP-231 treatment was combined with staurosporine. Finally, overexpression of CerK protected, whereas down-regulation of CerK with siRNA sensitized, cells for staurosporine-induced apoptosis. Conclusions and Implications Our data demonstrate for the first time a crucial role for CerK in the M phase control in cancer cells and suggest its targeted inhibition, using drugs such as NVP-231, in combination with conventional pro-apoptotic chemotherapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIMS Tumour buds in colorectal cancer represent an aggressive subgroup of non-proliferating and non-apoptotic tumour cells. We hypothesize that the survival of tumour buds is dependent upon anoikis resistance. The role of tyrosine kinase receptor B (TrkB), a promoter of epithelial-mesenchymal transition and anoikis resistance, in facilitating budding was investigated. METHODS AND RESULTS Tyrosine kinase receptor B immunohistochemistry was performed on a multiple-punch tissue microarray of 211 colorectal cancer resections. Membranous/cytoplasmic and nuclear expression was evaluated in tumour and buds. Tumour budding was assessed on corresponding whole tissue slides. Relationship to Ki-67 and caspase-3 was investigated. Analysis of Kirsten Ras (KRAS), proto-oncogene B-RAF (BRAF) and cytosine-phosphate-guanosine island methylator phenotype (CIMP) was performed. Membranous/cytoplasmic and nuclear TrkB were strongly, inversely correlated (P < 0.0001; r = -0.41). Membranous/cytoplasmic TrkB was overexpressed in buds compared to the main tumour body (P < 0.0001), associated with larger tumours (P = 0.0236), high-grade budding (P = 0.0011) and KRAS mutation (P = 0.0008). Nuclear TrkB was absent in buds (P <0.0001) and in high-grade budding cancers (P =0.0073). Among patients with membranous/cytoplasmic TrkB-positive buds, high tumour membranous/cytoplasmic TrkB expression was a significant, independent adverse prognostic factor [P = 0.033; 1.79, 95% confidence interval (CI) 1.05-3.05]. Inverse correlations between membranous/cytoplasmic TrkB and Ki-67 (r = -0.41; P < 0.0001) and caspase-3 (r =-0.19; P < 0.05) were observed. CONCLUSIONS Membranous/cytoplasmic TrkB may promote an epithelial-mesenchymal transition (EMT)-like phenotype with high-grade budding and maintain viability of buds themselves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Meniscal injuries can occur secondary to trauma or be instigated by the changes in knee-joint function that are associated with aging, osteo- and rheumatoid arthritis, disturbances in gait and obesity. Sixty per cent of persons over 50 years of age manifest signs of meniscal pathology. The surgical and arthroscopic measures that are currently implemented to treat meniscal deficiencies bring only transient relief from pain and effect but a temporary improvement in joint function. Although tissue-engineering-based approaches to meniscal repair are now being pursued, an appropriate in-vitro model has not been conceived. The aim of this study was to develop an organ-slice culturing system to simulate the repair of human meniscal lesions in vitro. The model consists of a ring of bovine meniscus enclosing a chamber that represents the defect and reproduces its sequestered physiological microenvironment. The defect, which is closed with a porous membrane, is filled with fragments of synovial tissue, as a source of meniscoprogenitor cells, and a fibrin-embedded, calcium-phosphate-entrapped depot of the meniscogenic agents BMP-2 and TGF-ß1. After culturing for 2 to 6 weeks, the constructs were evaluated histochemically and histomorphometrically, as well as immunohistochemically for the apoptotic marker caspase 3 and collagen types I and II. Under the defined conditions, the fragments of synovium underwent differentiation into meniscal tissue, which bonded with the parent meniscal wall. Both the parent and the neoformed meniscal tissue survived the duration of the culturing period without significant cell losses. The concept on which the in-vitro system is based was thus validated. This article is protected by copyright. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. We describe a new proapoptotic pathway in which cathepsin D directly activates caspase-8. Cathepsin D is released from azurophilic granules in neutrophils in a caspase-independent but reactive oxygen species-dependent manner. Under inflammatory conditions, the translocation of cathepsin D in the cytosol is blocked. Pharmacological or genetic inhibition of cathepsin D resulted in delayed caspase activation and reduced neutrophil apoptosis. Cathepsin D deficiency or lack of its translocation in the cytosol prolongs innate immune responses in experimental bacterial infection and in septic shock. Thus, we identified a new function of azurophilic granules that is in addition to their role in bacterial defense mechanisms: to regulate the life span of neutrophils and, therefore, the duration of innate immune responses through the release of cathepsin D.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small cell lung cancer (SCLC) is characterized by an aggressive phenotype and acquired resistance to a broad spectrum of anticancer agents. TNF-related apoptosis-inducing ligand (TRAIL) has been considered as a promising candidate for safe and selective induction of tumor cell apoptosis without toxicity to normal tissues. Here we report that TRAIL failed to induce apoptosis in SCLC cells and instead resulted in an up to 40% increase in proliferation. TRAIL-induced SCLC cell proliferation was mediated by extracellular signal-regulated kinase 1 and 2, and dependent on the expression of surface TRAIL-receptor 2 (TRAIL-R2) and lack of caspase-8, which is frequent in SCLC. Treatment of SCLC cells with interferon-gamma (IFN-gamma) restored caspase-8 expression and facilitated TRAIL-induced apoptosis. The overall loss of cell proliferation/viability upon treatment with the IFN-gamma-TRAIL combination was 70% compared to TRAIL-only treated cells and more than 30% compared to untreated cells. Similar results were obtained by transfection of cells with a caspase-8 gene construct. Altogether, our data suggest that TRAIL-R2 expression in the absence of caspase-8 is a negative determinant for the outcome of TRAIL-based cancer therapy, and provides the rationale for using IFN-gamma or other strategies able to restore caspase-8 expression to convert TRAIL from a pro-survival into a death ligand.