70 resultados para Bone Defects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The repair of critical-sized bony defects remains a challenge in the fields of implantology, maxillofacial surgery and orthopaedics. As an alternative bone-defect filler to autologous bone grafts, deproteinized bovine bone (DBB) is highly osteoconductive and clinically now widely used. However, this product suffers from the disadvantage of not being intrinsically osteoinductive. In the present study, this property was conferred by coating DBB with a layer of calcium phosphate into which bone morphogenetic protein 2 (BMP-2) was incorporated. Granules of DBB bearing a coating-incorporated depot of BMP-2--together with the appropriate controls (DBB bearing a coating but no BMP-2; uncoated DBB bearing adsorbed BMP-2; uncoated DBB bearing no BMP-2)--were implanted subcutaneously in rats. Five weeks later, the implants were withdrawn for a histomorphometric analysis of the volume densities of (i) bone, (ii) bone marrow, (iii) foreign-body giant cells and (iv) fibrous capsular tissue. Parameters (i) and (ii) were highest, whilst parameters (iii) and (iv) were lowest in association with DBB bearing a coating-incorporated depot of BMP-2. Hence, this mode of functionalization not only confers DBB with the property of osteoinductivity but also improves its biocompatibility--thus dually enhancing its clinical potential in the repair of bony defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem cell based autologous grafting has recently gained mayor interest in various surgical fields for the treatment of extensive tissue defects. CD34(+) and CD133(+) cells that can be isolated from the pool of bone marrow mononuclear cells (BMC) are capable of differentiating into mature endothelial cells in vivo. These endothelial progenitor cells (EPC) are believed to represent a major portion of the angiogenic regenerative cells that are released from bone marrow when tissue injury has occurred. In recent years tissue engineers increasingly looked at the process of vessel neoformation because of its major importance for successful cell grafting to replace damaged tissue. Up to now one of the greatest problems preventing a clinical application is the large scale of expansion that is required for such purpose. We established a method to effectively enhance the expansion of CD34(+) and CD133(+) cells by the use of platelet-released growth factors (PRGF) as a media supplement. PRGF were prepared from thrombocyte concentrates and used as a media supplement to iscove's modified dulbecco's media (IMDM). EPC were immunomagnetically separated from human bone morrow monocyte cells and cultured in IMDM + 10% fetal calf serum (FCS), IMDM + 5%, FCS + 5% PRGF and IMDM + 10% PRGF. We clearly demonstrate a statistically significant higher and faster cell proliferation rate at 7, 14, 21, and 28 days of culture when both PRGF and FCS were added to the medium as opposed to 10% FCS or 10% PRGF alone. The addition of 10% PRGF to IMDM in the absence of FCS leads to a growth arrest from day 14 on. In histochemical, immunocytochemical, and gene-expression analysis we showed that angiogenic and precursor markers of CD34(+) and CD133(+) cells are maintained during long-term culture. In summary, we established a protocol to boost the expansion of CD34(+) and CD133(+) cells. Thereby we provide a technical step towards the clinical application of autologous stem cell transplantation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporal hollowing due to temporal muscle atrophy after standard skull base surgery is common. Various techniques have been previously described to correct the disfiguring defect. Most often reconstruction is performed using freehand molded polymethylmethacrylate cement. This method and material are insufficient in terms of aesthetic results and implant characteristics. We herein propose reconstruction of such defects with a polyetheretherketone (PEEK)-based patient-specific implant (PSI) including soft-tissue augmentation to preserve normal facial topography. We describe a patient who presented with a large temporo-orbital hemangioma that had been repaired with polymethylmethacrylate 25 years earlier. Because of a toxic skin atrophy fistula, followed by infection and meningitis, this initial implant had to be removed. The large, disfiguring temporo-orbital defect was reconstructed with a PEEK-based PSI. The lateral orbital wall and the temporal muscle atrophy were augmented with computer-aided design and surface modeling techniques. The operative procedure to implant and adopt the reconstructed PEEK-based PSI was simple, and an excellent cosmetic outcome was achieved. The postoperative clinical course was uneventful over a 5-year follow-up period. Polyetheretherketone-based combined bony and soft contour remodeling is a feasible and effective method for cranioplasty including combined bone and soft-tissue reconstruction of temporo-orbital defects. Manual reconstruction of this cosmetically delicate area carries an exceptional risk of disfiguring results. Augmentation surgery in this anatomic location needs accurate PSIs to achieve satisfactory cosmetic results. The cosmetic outcome achieved in this case is superior compared with previously reported techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study has been to compare the clinical and radiographic outcome of periodontal intrabony defect treatment by open flap debridement alone or in combination with nanocrystalline hydroxyapatite bone substitute application. Thirty patients diagnosed with advanced periodontits were divided into two groups: the control group (OFD), in which an open flap debridement procedure was performed and the test group (OFD+NHA), in which defects were additionally filled with nanocrystalline hydroxyapatite bone substitute material. Plaque index (PI), gingival index (GI), bleeding on probing (BOP), pocket depth (PD), gingival recession (GR) and clinical attachment level (CAL) were measured prior to, then 6 and 12months following treatment. Radiographic depth and width of defects were also evaluated. There were no differences in any clinical and radiographic parameters between the examined groups prior to treatment. After treatment, BOP, GI, PD, CAL, radiographic depth and width parameter values improved statistically significantly in both groups. The PI value did not change, but the GR value increased significantly after treatment. There were no statistical differences in evaluated parameters between OFD and OFD+NHA groups 6 and 12months after treatment. Within the limits of the study, it can be concluded that the additional use of nanocrystalline hydroxyapatite bone substitute material after open flap procedure does not improve clinical and radiographic treatment outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Degree III furcation involvements were surgically created at four first molars in each of three monkeys. Following 6 weeks of healing, full-thickness flaps were elevated. Following 24% EDTA gel conditioning, the defects were treated with one of the following: (1) enamel matrix proteins (EMD), (2) guided tissue regeneration (GTR) or (3) a combination EMD and GTR. The control defects did not receive any treatment. After 5 months of healing, the animals were sacrificed. Three 8 μm thick histological central sections, 100 μm apart, were used for histomorphometric analysis in six zones of each tooth either within the furcation area or on the pristine external surface of the root. In all specimens, new cementum with inserting collagen fibres was formed. Following GTR or GTR + EMD, cementum was formed up to and including the furcation fornix indicating complete regeneration on the defect periphery. Periodontal ligament fibres were less in all four modalities compared to pristine tissues. In the teeth treated with GTR and GTR + EMD a higher volume of bone and periodontal ligament tissues was observed compared to EMD. After 5 months of healing, regenerated tissues presented quantitative differences from the pristine tissues. In the two modalities where GTR alone or combined with EMD was used, the regenerated tissues differed in quantity from the EMD-treated sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cranioplasty is a common neurosurgical procedure. Free-hand molding of polymethyl methacrylate (PMMA) cement into complex three-dimensional shapes is often time-consuming and may result in disappointing cosmetic outcomes. Computer-assisted patient-specific implants address these disadvantages but are associated with long production times and high costs. In this study, we evaluated the clinical, radiological, and cosmetic outcomes of a time-saving and inexpensive intraoperative method to mold custom-made implants for immediate single-stage or delayed cranioplasty. Data were collected from patients in whom cranioplasty became necessary after removal of bone flaps affected by intracranial infection, tumor invasion, or trauma. A PMMA replica was cast between a negative form of the patient's own bone flap and the original bone flap with exactly the same shape, thickness, and dimensions. Clinical and radiological follow-up was performed 2 months post-surgery. Patient satisfaction (Odom criteria) and cosmesis (visual analogue scale for cosmesis) were evaluated 1 to 3 years after cranioplasty. Twenty-seven patients underwent intraoperative template-molded patient-specific cranioplasty with PMMA. The indications for cranioplasty included bone flap infection (56%, n = 15), calvarian tumor resection (37%, n = 10), and defect after trauma (7%, n = 2). The mean duration of the molding procedure was 19 ± 7 min. Excellent radiological implant alignment was achieved in 94% of the cases. All (n = 23) but one patient rated the cosmetic outcome (mean 1.4 years after cranioplasty) as excellent (70%, n = 16) or good (26%, n = 6). Intraoperative cast-molded reconstructive cranioplasty is a feasible, accurate, fast, and cost-efficient technique that results in excellent cosmetic outcomes, even with large and complex skull defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To compare four different implantation modalities for the repair of superficial osteochondral defects in a caprine model using autologous, scaffold-free, engineered cartilage constructs, and to describe the short-term outcome of successfully implanted constructs. METHODS: Scaffold-free, autologous cartilage constructs were implanted within superficial osteochondral defects created in the stifle joints of nine adult goats. The implants were distributed between four 6-mm-diameter superficial osteochondral defects created in the trochlea femoris and secured in the defect using a covering periosteal flap (PF) alone or in combination with adhesives (platelet-rich plasma (PRP) or fibrin), or using PRP alone. Eight weeks after implantation surgery, the animals were killed. The defect sites were excised and subjected to macroscopic and histopathologic analyses. RESULTS: At 8 weeks, implants that had been held in place exclusively with a PF were well integrated both laterally and basally. The repair tissue manifested an architecture similar to that of hyaline articular cartilage. However, most of the implants that had been glued in place in the absence of a PF were lost during the initial 4-week phase of restricted joint movement. The use of human fibrin glue (FG) led to massive cell infiltration of the subchondral bone. CONCLUSIONS: The implantation of autologous, scaffold-free, engineered cartilage constructs might best be performed beneath a PF without the use of tissue adhesives. Successfully implanted constructs showed hyaline-like characteristics in adult goats within 2 months. Long-term animal studies and pilot clinical trials are now needed to evaluate the efficacy of this treatment strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Focal osteochondral defects are still a challenging problem in joint surgery. We have developed a two-layered implant consisting of a basal porous beta-tricalcium phosphate (TCP) for bone reconstruction and a superficial fibrous collagen type I/III layer for cartilage regeneration. Fifty-four osteochondral defects in the trochlear groove of 27 Göttinger Minipigs were created and either left untreated, treated with the implant alone, or the implant augmented with an additional growth factor mixture, which was assumed to stimulate cell and tissue differentiation. Follow-up was 6, 12 and 52 weeks with n=6 for each group. The repair tissue was evaluated for its gross appearance and biomechanical properties. Histological sections were semi-quantitatively scored for their histomorphological structure. Treatment with the two-layered implant improved defect filling and subchondral bone repair at 6 and 12 weeks follow-up. The TCP was replaced by cancellous bone at 52 weeks. Cartilage repair tissue mainly consisted of fibrocartilage and showed a moderate cell density up to the joint surface. Growth factor treatment improved the mechanical and histomorphological properties of the cartilage repair tissue at 12, but not at 52 weeks postoperatively. In conclusion, the two-layered collagen-TCP implant augmented with chondroinductive growth factors seems a promising new option for the treatment of deep osteochondral defects in joint surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Cyclopentenone prostaglandins have been shown to promote osteoblast differentiation in vitro. The aim of this study was to examine in a rat model the effects of local delivery of Delta(12)-prostaglandin J(2) (Delta(12)-PGJ(2)) on new bone formation and growth factor expression in (i) cortical defects and (ii) around titanium implants. MATERIAL AND METHODS: Standardized transcortical defects were prepared bilaterally in the femur of 28 male Wistar rats. Ten microliters of Delta(12)-PGJ(2) at 4 concentrations (10(-9), 10(-7), 10(-5) and 10(-3) mol/l) in a collagen vehicle were delivered inside a half-cylindrical titanium chamber fixed over the defect. Contralateral defects served as vehicle controls. Ten days after surgery, the amount of new bone formation in the cortical defect area was determined by histomorphometry and expression of platelet-derived growth factor (PDGF)-A and -B, insulin-like growth factor (IGF)-I/II, bone morphogenetic protein (BMP)-2 and -6 was examined by immunohistochemistry. In an additional six rats, 24 titanium implants were inserted into the femur. Five microliters of carboxymethylcellulose alone (control) or with Delta(12)-PGJ(2) (10(-5) and 10(-3) mol/l) were delivered into surgically prepared beds prior to implant installation. RESULTS: Delta(12)-PGJ(2) (10(-5) and 10(-3) mol/l) significantly enhanced new bone formation (33%, P<0.05) compared with control cortical defects. Delivery of Delta(12)-PGJ(2) at 10(-3) mol/l significantly increased PDGF-A and -B and BMP-2 and -6 protein expression (P<0.05) compared with control defects. No significant difference was found in IGF-I/II expression compared with controls. Administration of Delta(12)-PGJ(2) also significantly increased endosteal new bone formation around implants compared with controls. CONCLUSION: Local delivery of Delta(12)-PGJ(2) promoted new bone formation in the cortical defect area and around titanium implants. Enhanced expression of BMP-2 and -6 as well as PDGF-A and -B may be involved in Delta(12)-PGJ(2)-induced new bone formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Autogenous bone is the most successful bone-grafting material; however, multiple disadvantages continue to drive developments of improved methods for bone regeneration. AIM: The aim of the present study was to test the hypothesis that an arginine-glycine-aspartic acid (RGD) modified polyethylene glycol-based matrix (PEG) containing covalently bound peptides of the parathyroid hormone (PTH(1-34)) enhances bone regeneration to a degree similar to autogenous bone. MATERIAL AND METHODS: Six American foxhounds received a total of 48 cylindrical titanium implants placed in the mandible between the first premolar and the second molar. Five, respectively, 7 months following tooth extraction, implants were placed into the center of surgically created defects. This resulted in a circumferential bone defect simulating an alveolar defect with a circular gap of 1.5 mm. Four treatment modalities were randomly allocated to the four defects per side: (1) PEG-matrix containing 20 microg/ml of PTH(1-34), and 350 microg/ml cys-RGD peptide, (2) PEG alone, (3) autogenous bone and (4) empty defects. Histomorphometric analysis was performed 4 and 12 weeks after implantation. The area fraction of newly formed bone was determined within the former defect and the degree of bone-to-implant contact (BIC) was evaluated both in the defect region and in the apical region of the implant. For statistical analysis ANOVA and subsequent pairwise Student's t-test were applied. RESULTS: Healing was uneventful and all implants were histologically integrated. Histomorphometric analysis after 4 weeks showed an average area fraction of newly formed bone of 41.7+/-1.8% for matrix-PTH, 26.6+/-4.1% for PEG alone, 43.9+/-4.5% for autogenous bone, and 28.9+/-1.5% for empty defects. After 12 weeks, the respective values were 49.4+/-7.0% for matrix-PTH, 39.3+/-5.7% for PEG alone, 50.5+/-3.4% for autogenous bone and 38.7+/-1.9% for empty defects. Statistical analysis after 4 and 12 weeks revealed significantly more newly formed bone in the PTH(1-34) group compared with PEG alone or empty defects, whereas no difference could be detected against autogenous bone. Regarding BIC no significant difference was observed between the four treatment groups neither at 4 nor at 12 weeks. CONCLUSION: It is concluded that an RGD-modified PEG hydrogel containing PTH(1-34) is an effective matrix system to obtain bone regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstruction of the anterior skull base and fronto-orbital framework following extensive tumor resection is both challenging and controversial. Dural defects are covered with multiple sheets of fascia lata that provide sufficient support and avoid herniation. Plating along the skull base is contraindicated. After resection of orbital walls, grafting is necessary if the periosteum or parts of the periorbital tissue had to be removed, to avoid enophthalmus or strabism. Free bone grafts exposed to the sinonasal or pharyngeal cavity are vulnerable to infection or necrosis: therefore, covering the grafts with vascularized tissue, such as the Bichat fat-pad or pedicled temporalis flaps, should reduce these complications. Alloplastic materials are indispensable in cranial defects, whereas microsurgical free tissue transfer is indicated in cases of orbital exenteration and skin defects. The authors review their experience and follow-up of 122 skull base reconstructions following extensive subcranial tumor resection. Most significant complications were pneumocranium in 4.9%, CSF leaks in 3.2%, and partial bone resorption in 8.1%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports on 15 mandibular reconstructions using the Dumbach Titan Mesh-System and particulate cancellous bone and marrow harvested from bilateral posterior ilia. All cases showed segmental defects. Eleven cases involved patients with malignant tumor. Six patients had received irradiation of 40-50 Gy. Reconstructions were performed immediately in 1 patient and secondarily in the remaining 14 patients. In 13 cases, mandibles were successfully reconstructed. Of these 13 patients, 9 reconstructions were completed without complications, whereas the other 4 cases showed complications. In 2 cases, reconstruction failed completely. Overall success rate was 87%. Statistical analysis revealed the extent of mandibular defect, but not malignancy of the original disease or radiotherapy of

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES The application of an enamel matrix derivative (EMD) for regenerative periodontal surgery has been shown to promote formation of new cementum, periodontal ligament, and alveolar bone. In intrabony defects with a complicated anatomy, the combination of EMD with various bone grafting materials has resulted in additional clinical improvements, but the initial cellular response of osteoblasts coming in contact with these particles have not yet been fully elucidated. The objective of the present study was to evaluate the in vitro effects of EMD combined with a natural bone mineral (NBM) on a wide variety of genes, cytokines, and transcription factors and extracellular matrix proteins on primary human osteoblasts. MATERIAL AND METHODS Primary human osteoblasts were seeded on NBM particles pre-coated with versus without EMD and analyzed for gene differences using a human osteogenesis gene super-array (Applied Biosystems). Osteoblast-related genes include those transcribed during bone mineralization, ossification, bone metabolism, cell growth and differentiation, as well as gene products representing extracellular matrix molecules, transcription factors, and cell adhesion molecules. RESULTS EMD promoted gene expression of various osteoblast differentiation markers including a number of collagen types and isoforms, SMAD intracellular proteins, osteopontin, cadherin, alkaline phosphatase, and bone sialoprotein. EMD also upregulated a variety of growth factors including bone morphogenetic proteins, vascular endothelial growth factors, insulin-like growth factor, transforming growth factor, and their associated receptor proteins. CONCLUSION The results from the present study demonstrate that EMD is capable of activating a wide variety of genes, growth factors, and cytokines when pre-coated onto NBM particles. CLINICAL RELEVANCE The described in vitro effects of EMD on human primary osteoblasts provide further biologic support for the clinical application of a combination of EMD with NBM particles in periodontal and oral regenerative surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE Epidemiologic and clinical studies have indicated that diabetes is a risk factor for periodontal disease progression and healing. The aim of the present study was to evaluate short-term healing after enamel matrix derivative (EMD) application in combined supra/infrabony periodontal defects in diabetic rats. MATERIAL AND METHODS Thirty male Wistar rats were initially divided into two groups, one with streptozotocin-induced diabetes and another one with healthy (non-diabetic) animals. Bony defects were surgically created on the mesial root of the first maxillary molars. After root surface planing and EDTA conditioning, EMD was applied to the roots at one side of the maxillae, while those on the contralateral sides were left untreated. Animals were killed 3 wk after surgery, and block sections were prepared for histologic and histomorphometric analysis. RESULTS There was statistically significant more gingival recession in diabetic animals than in non-diabetic animals. The length of the junctional epithelium was significantly shorter in the EMD-treated sites in both diabetic and normoglycemic rats. Sulcus depth and length of supracrestal soft connective tissue showed no statistically significant differences between groups. In all animals, new bone formation was observed. Although new bone occurred more frequently in healthy animals, the extent of new bone was not significantly different between groups. In none of the teeth, a layer of new cementum was detectable. EMD had no influence on bone or cementum regeneration. Adverse reactions such as excessive inflammation due to bacterial root colonization, ankylosis and bone fractures were exclusively observed in diabetic animals, irrespective of EMD treatment. CONCLUSION Within the limits of the present study, it can be concluded that periodontal healing was impaired in streptozotocin-induced diabetic rats. EMD had no beneficial effects on new bone and cementum formation during short-term healing in this defect model and could not ameliorate the adverse effects in the systemically compromised animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Recent review articles have shown that open debridement is more effective in the treatment of peri-implantitis than closed therapy. However, surgery may result in marginal recession and compromise esthetics. The purpose of this study was to assess the efficacy of nonsurgical antimicrobial photodynamic therapy (aPDT) in moderate vs severe defects. METHOD AND MATERIALS The study encompassed 16 patients with a total of 18 ailing implants. Ten of these implants showed moderate bone loss (< 5 mm; Group 1) and eight implants severe defects (5 through 8 mm; Group 2). All implants received aPDT without surgical intervention. At baseline and 2 weeks, 3 months, and 6 months after therapy, peri-implant health was assessed including sulcus bleeding index (SBI), probing depth (PD), distance from implant shoulder to marginal mucosa (DIM), and clinical attachment level (CAL). Radiographic evaluation of distance from implant to bone (DIB) allowed comparison of peri-implant hard tissues after 6 months. RESULTS Baseline values for SBI were comparable in both groups. Three months after therapy, in both groups, SBI and CAL decreased significantly. In contrast, after 6 months, CAL and DIB increased significantly in Group 2, not in Group 1. However, DIM-values were not statistically different 6 months after therapy in both groups. CONCLUSION Within the limits of this 6-month study, nonsurgical aPDT could stop bone resorption in moderate peri-implant defects but not in severe defects. However, marginal tissue recession was not significantly different in both groups at the end of the study. Therefore, especially in esthetically important sites, surgical treatment of severe peri-implantitis defects seems to remain mandatory.