115 resultados para Biogenic particles
Resumo:
The adsorption of anionic, carboxyl functionalized latex particles, recharged by a cationic surfactant acting as fabric softener/conditioner, to a cellulose surface was investigated with evanescent wave video microscopy. This technique allows to monitor the deposition and release of individual particles in real-time with an excellent selectivity and sensitivity. Since the recharged particles and the conditioner compete for the free surface, the initial deposition rate and final surface coverage are found to be strongly dependent on the ratio of particle and conditioner concentrations.
Resumo:
ABSTRACT: Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects.Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be detected under controlled experimental conditions. Transgenic mice (Apo E -/-), known to have high base line levels of oxidative stress, were exposed by inhalation to well characterized, concentrated ambient air pollution. Morphometric analysis of the CNS indicated unequivocally that the brain is a critical target for PM exposure and implicated oxidative stress as a predisposing factor that links PM exposure and susceptibility to neurodegeneration.Together, these data present evidence for potential translocation of ambient particles on organs distant from the lung and the neurodegenerative consequences of exposure to air pollutants.
Resumo:
In climate research the interest on carbonaceous particles has increased over the last years because of their influence on the radiation balance of the earth. Nevertheless, there is a paucity of available data regarding their concentrations and sources in the past. Such data would be important for a better understanding of their effects and for estimating their influence on future climate. Here, a technique is described to extract carbonaceous particles from ice core samples with subsequent separation of the two main constituents into organic carbon (OC) and elemental carbon (EC) for analysis of their concentrations in the past. This is combined with further analysis of OC and EC 14C/12C ratios by accelerator mass spectrometry (AMS), what can be used for source apportionment studies of past emissions. We further present how 14C analysis of the OC fraction could be used in the future to date any ice core extracted from a high-elevation glacier. Described sample preparation steps to final analysis include the combustion of micrograms of water–insoluble carbonaceous particles, primary collected by filtration of melted ice samples, the graphitisation of the obtained CO2 to solid AMS target material and final AMS measurements. Possible fractionation processes were investigated for quality assurance. Procedural blanks were reproducible and resulted in carbon masses of 1.3 ± 0.6 μg OC and 0.3 ± 0.1 μg EC per filter. The determined fraction of modern carbon (fM) for the OC blank was 0.61 ± 0.13. The analysis of processed IAEA-C6 and IAEA-C7 reference material resulted in fM = 1.521 ± 0.011 and δ13C = −10.85 ± 0.19‰, and fM = 0.505 ± 0.011 and δ13C = −14.21 ± 0.19‰, respectively, in agreement with consensus values. Initial carbon contents were thereby recovered with an average yield of 93%.
Resumo:
ABSTRACT: BACKGROUND: Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization. RESULTS: Using a triple cell co-culture model of the human airway wall composed of epithelial cells, macrophages and dendritic cells we quantified the entering of fine (1 mum) and nano-sized (0.078 mum) polystyrene particles by laser scanning microscopy. The number distribution of particles within the cell types was significantly different between fine and nano-sized particles suggesting different translocation characteristics. Analysis of the intracellular localization of gold (0.025 mum) and titanium dioxide (0.02-0.03 mum) nanoparticles by energy filtering transmission electron microscopy showed differences in intracellular localization depending on particle composition. Titanium dioxide nanoparticles were detected as single particles without membranes as well as in membrane-bound agglomerations. Gold nanoparticles were found inside the cells as free particles only. The potential of the different particle types (different sizes and different materials) to induce a cellular response was determined by measurements of the tumour necrosis factor-alpha in the supernatants. We measured a 2-3 fold increase of tumour necrosis factor-alpha in the supernatants after applying 1 mum polystyrene particles, gold nanoparticles, but not with polystyrene and titanium dioxide nanoparticles. CONCLUSION: Quantitative laser scanning microscopy provided evidence that the translocation and entering characteristics of particles are size-dependent. Energy filtering transmission electron microscopy showed that the intracellular localization of nanoparticles depends on the particle material. Both particle size and material affect the cellular responses to particle exposure as measured by the generation of tumour necrosis factor-alpha.
Resumo:
The role of macrophages in the clearance of particles with diameters less than 100 nm (ultrafine or nanoparticles) is not well established, although these particles deposit highly efficiently in peripheral lungs, where particle phagocytosis by macrophages is the primary clearance mechanism. To investigate the uptake of nanoparticles by lung phagocytes, we analyzed the distribution of titanium dioxide particles of 20 nm count median diameter in macrophages obtained by bronchoalveolar lavage at 1 hour and 24 hours after a 1-hour aerosol inhalation. Differential cell counts revealing greater than 96% macrophages and less than 1% neutrophils and lymphocytes excluded inflammatory cell responses. Employing energy-filtering transmission electron microscopy (EFTEM) for elemental microanalysis, we examined 1,594 macrophage profiles in the 1-hour group (n = 6) and 1,609 in the 24-hour group (n = 6). We found 4 particles in 3 macrophage profiles at 1 hour and 47 particles in 27 macrophage profiles at 24 hours. Model-based data analysis revealed an uptake of 0.06 to 0.12% ultrafine titanium-dioxide particles by lung-surface macrophages within 24 hours. Mean (SD) particle diameters were 31 (8) nm at 1 hour and 34 (10) nm at 24 hours. Particles were localized adjacent (within 13-83 nm) to the membrane in vesicles with mean (SD) diameters of 592 (375) nm at 1 hour and 414 (309) nm at 24 hours, containing other material like surfactant. Additional screening of macrophage profiles by conventional TEM revealed no evidence for agglomerated nanoparticles. These results give evidence for a sporadic and rather unspecific uptake of TiO(2)-nanoparticles by lung-surface macrophages within 24 hours after their deposition, and hence for an insufficient role of the key clearance mechanism in peripheral lungs.
Resumo:
In previous studies, it was shown that there is a gunshot-related transport of skin particles and microorganisms from the entrance region into the depth of the bullet path. The present study deals with the question of whether gunshots may also cause a retrograde transport of skin particles and microorganisms from the bullet exit region back into the bullet path. For this purpose, we used a composite model consisting of rectangular gelatin blocks and pig skin. The skin pieces were firmly attached to the gelatin blocks on the side where the bullet was to exit. Prior to the test shots, the outer surface of the pig skin was contaminated with a thin layer of a defined bacterial suspension. After drying the skin, test shots were fired from a distance of 10 m using cartridges calibre .38 spec. with different bullet types. Subsequent analyses showed that in all shots with full penetration of the composite model, the bullet path contained displaced skin particles and microorganisms from the skin surface at the exit site. These could be regularly detected in the distal 6-8 cm of the track, occasionally up to a distance of 18 cm from the exit hole. The distribution of skin particles and microorganisms is presented and the possible mechanism of this retrograde transport is discussed.
Resumo:
Evidence from epidemiological studies indicates that acute exposure to airborne pollutants is associated with an increased risk of morbidity and mortality attributed to cardiovascular diseases. The present study investigated the effects of combustion-derived ultrafine particles (diesel exhaust particles) as well as engineered nanoparticles (titanium dioxide and single-walled carbon nanotubes) on impulse conduction characteristics, myofibrillar structure and the formation of reactive oxygen species in patterned growth strands of neonatal rat ventricular cardiomyocytes in vitro. Diesel exhaust particles as well as titanium dioxide nanoparticles showed the most pronounced effects. We observed a dose-dependent change in heart cell function, an increase in reactive oxygen species and, for titanium dioxide, we also found a less organized myofibrillar structure. The mildest effects were observed for single-walled carbon nanotubes, for which no clear dose-dependent alterations of theta and dV/dt(max) could be determined. In addition, there was no increase in oxidative stress and no change in the myofibrillar structure. These results suggest that diesel exhaust as well as titanium dioxide particles and to a lesser extent also single-walled carbon nanotubes can directly induce cardiac cell damage and can affect the function of the cells.
Resumo:
Epidemiologic studies have shown correlations between morbidity and particles < or = 2.5 microm generated from pollution processes and manufactured nanoparticles. Thereby nanoparticles seem to play a specific role. The interaction of particles with the lung, the main pathway of undesired particle uptake, is poorly understood. In most studies investigating these interactions in vitro, particle deposition differs greatly from the in vivo situation, causing controversial results. We present a nanoparticle deposition chamber to expose lung cells mimicking closely the particle deposition conditions in the lung. In this new deposition chamber, particles are deposited very efficiently, reproducibly, and uniformly onto the cell culture, a key aspect if cell responses are quantified in respect to the deposited particle number. In situ analyses of the lung cells, e.g., the ciliary beat frequency, indicative of the defense capability of the cells, are complemented by off-line biochemical, physiological, and morphological cell analyses.
Resumo:
BACKGROUND: Lymph node staging of bladder or prostate cancer using conventional imaging is limited. Newer approaches such as ultrasmall superparamagnetic particles of iron oxide (USPIO) and diffusion-weighted magnetic resonance imaging (DW-MRI) have inconsistent diagnostic accuracy and are difficult to interpret. OBJECTIVE: To assess whether combined USPIO and DW-MRI (USPIO-DW-MRI) improves staging of normal-sized lymph nodes in bladder and/or prostate cancer patients. DESIGN, SETTING, AND PARTICIPANTS: Twenty-one consecutive patients with bladder and/or prostate cancer were enrolled between May and October 2008. One patient was excluded secondary to bone metastases detected on DW-MRI with subsequent abstention from surgery. INTERVENTION: Patients preoperatively underwent 3-T MRI before and after administration of lymphotropic USPIO using conventional MRI sequences combined with DW-MRI. Surgery consisted of extended pelvic lymphadenectomy and resection of primary tumors. MEASUREMENTS: Diagnostic accuracies of the new combined USPIO-DW-MRI approach compared with the "classic" reading method evaluating USPIO images without and with DW-MRI versus histopathology were evaluated. Duration of the two reading methods was noted for each patient. RESULTS AND LIMITATIONS: Diagnostic accuracy (90% per patient or per pelvic side) was comparable for the classic and the USPIO-DW-MRI reading method, while time of analysis with 80 min (range 45-180 min) for the classic and 13 min (range 5-90 min) for the USPIO-DW-MRI method was significantly shorter (p<0.0001). Interobserver agreement (three blinded readers) was high with a kappa value of 0.75 and 0.84, respectively. Histopathological analysis showed metastases in 26 of 802 analyzed lymph nodes (3.2%). Of these, 24 nodes (92%) were correctly diagnosed as positive on USPIO-DW-MRI. In two patients, one micrometastasis each (1.0x0.2 mm; 0.7x0.4 mm) was missed in all imaging studies. CONCLUSIONS: USPIO-DW-MRI is a fast and accurate method for detecting pelvic lymph node metastases, even in normal-sized nodes of bladder or prostate cancer patients.