135 resultados para Areal bone mineral density


Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN: In vitro testing of vertebroplasty techniques including pulsed jet-lavage for fat and marrow removal in human cadaveric lumbar and thoracic vertebrae. OBJECTIVE: To develop jet-lavage techniques for vertebroplasty and investigate their effect on cement distribution, injection forces, and fat embolism. SUMMARY OF BACKGROUND DATA: The main complications of cement vertebroplasty are cement leakage and pulmonary fat embolism, which can have fatal consequences and are difficult to prevent reliably by current vertebroplasty techniques. METHODS: Twenty-four vertebrae (Th8-L04) from 5 osteoporotic cadaver spines were grouped in triplets depending on bone mineral density (BMD). Before polymethylmethacrylate (PMMA) vertebroplasty, a pulsatile jet-lavage for removal of intertrabecular fat and bone marrow was performed in 2 groups with 8 specimens each, performing radial and axial irrigation from the biopsy needles. One hundred mL of Ringer solution were injected through 1 pedicle and regained by low vacuum via the contralateral pedicle. Eight control vertebrae were not irrigated. All specimens underwent standardized PMMA cement augmentation injecting 20% of the vertebral volume. Injection forces, cement distribution, and extravasations were quantified. RESULTS: All irrigation solution could be retrieved with the vacuum applied. A Kruskal-Wallis test revealed significantly higher injection forces of the control group as compared with the irrigated groups (P = 0.021). Dilatation of the syringe at forces above 300 N occurred in 75% of the untreated compared with 12.5% of the lavaged specimens. CT distribution analysis showed more homogenous cement distribution of the cement and significantly less extravasation in the irrigated specimens. CONCLUSION: The developed lavage technique for vertebroplasty showed to be feasible and reproducible. The reduction of injection forces would allow the use of more viscous PMMA cement lowering the risk for cement embolization and results in a safer procedure. The wash-out of bone marrow and the possible reduction of pulmonary fat embolism have to be verified with in vivo models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal cord injury (SCI) leads to severe bone loss in the paralysed limbs and to a resulting increased fracture risk thereof. Since long bone fractures can lead to comorbidities and a reduction in quality of life, it is important to improve bone strength in people with chronic SCI. In this prospective longitudinal cohort study, we investigated whether functional electrical stimulation (FES) induced high-volume cycle training can partially reverse the loss of bone substance in the legs after chronic complete SCI. Eleven participants with motor-sensory complete SCI (mean age 41.9+/-7.5 years; 11.0+/-7.1 years post injury) were recruited. After an initial phase of 14+/-7 weeks of FES muscle conditioning, participants performed on average 3.7+/-0.6 FES-cycling sessions per week, of 58+/-5 min each, over 12 months at each individual's highest power output. Bone and muscle parameters were investigated in the legs by means of peripheral quantitative computed tomography before the muscle conditioning (t1), and after six (t2) and 12 months (t3) of high-volume FES-cycle training. After 12 months of FES-cycling, trabecular and total bone mineral density (BMD) as well as total cross-sectional area in the distal femoral epiphysis increased significantly by 14.4+/-21.1%, 7.0+/-10.8% and 1.2+/-1.5%, respectively. Bone parameters in the femoral shaft showed small but significant decreases, with a reduction of 0.4+/-0.4% in cortical BMD, 1.8+/-3.0% in bone mineral content, and 1.5+/-2.1% in cortical thickness. These decreases mainly occurred between t1 and t2. No significant changes were found in any of the measured bone parameters in the tibia. Muscle CSA at the thigh increased significantly by 35.5+/-18.3%, while fat CSA at the shank decreased by 16.7+/-12.3%. Our results indicate that high-volume FES-cycle training leads to site-specific skeletal changes in the paralysed limbs, with an increase in bone parameters at the actively loaded distal femur but not the passively loaded tibia. Thus, we conclude that high-volume FES-induced cycle training has clinical relevance as it can partially reverse bone loss and thus may reduce fracture risk at this fracture prone site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Periodontal therapy using the combination of platelet-rich plasma (PRP) and different grafting materials has been suggested as a modality to enhance the outcome of regenerative surgery. In most clinical studies, a barrier membrane was used to cover the defects, and thus, the effects of PRP may have been masked by the effects of the barrier. The data from controlled clinical studies evaluating the effect of regenerative therapy using various grafting materials with or without PRP are still limited. The purpose of this study was to clinically compare the healing of intrabony defects treated with either a combination of an anorganic bovine bone mineral (ABBM) and PRP to those obtained with ABBM alone. METHODS: Thirty patients with advanced chronic periodontal disease and displaying one intrabony defect were randomly treated with PRP + ABBM or ABBM alone. The following clinical parameters were evaluated at baseline and 1 year after treatment: plaque index (PI), gingival index (GI), bleeding on probing (BOP), probing depth (PD), gingival recession (GR), and clinical attachment level (CAL). The primary outcome variable was CAL. RESULTS: No statistical significant differences in any of the investigated parameters between the two groups were observed at baseline. Healing was uneventful in all patients. In the PRP + ABBM group, mean PD decreased from 8.6 +/- 1.8 mm to 3.4 +/- 1.4 mm (P <0.001) and mean CAL changed from 9.9 +/- 1.7 mm to 5.3 +/- 1.8 mm (P <0.001). In the ABBM group, mean PD decreased from 8.5 +/- 2.0 mm to 3.2 +/- 1.3 mm (P <0.001) and mean CAL changed from 9.6 +/- 1.9 mm to 4.9 +/- 1.5 mm (P <0.001). CAL gains >or=3 mm were measured in 80% (12 of 15 defects) of cases treated with PRP + ABBM and in 87% (13 of 15 defects) of cases treated with ABBM alone. No statistically significant differences in any of the investigated parameters were observed between the two groups at the 1-year reevaluation. CONCLUSIONS: Within the limits of the present study, it can be concluded that 1) at 1 year after regenerative surgery with PRP + ABBM and ABBM alone, significant PD reductions and CAL gains were found, and 2) the use of PRP failed to improve the results obtained with ABBM alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate adaptive changes in bone and muscle parameters in the paralysed limbs after detraining or reduced functional electrical stimulation (FES) induced cycling following high-volume FES-cycling in chronic spinal cord injury. SUBJECTS: Five subjects with motor-sensory complete spinal cord injury (age 38.6 years, lesion duration 11.4 years) were included. Four subjects stopped FES-cycling completely after the training phase whereas one continued reduced FES-cycling (2-3 times/week, for 30 min). METHODS: Bone and muscle parameters were assessed in the legs using peripheral quantitative computed tomography at 6 and 12 months after cessation of high-volume FES-cycling. RESULTS: Gains achieved in the distal femur by high-volume FES-cycling were partly maintained at one year of detraining: 73.0% in trabecular bone mineral density, 63.8% in total bone mineral density, 59.4% in bone mineral content and 22.1% in muscle cross-sectional area in the thigh. The subject who continued reduced FES-cycling maintained 96.2% and 95.0% of the previous gain in total and trabecular bone mineral density, and 98.5% in muscle cross-sectional area. CONCLUSION: Bone and muscle benefits achieved by one year of high-volume FES-cycling are partly preserved after 12 months of detraining, whereas reduced cycling maintains bone and muscle mass gained. This suggests that high-volume FES-cycling has clinical relevance for at least one year after detraining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent clinical trials have reported favorable early results for transpedicular vertebral cement reinforcement of osteoporotic vertebral insufficiencies. There is, however, a lack of basic data on the application, safety and biomechanical efficacy of materials such as polymethyl-methacrylate (PMMA) and calciumphospate (CaP) cements. The present study analyzed 33 vertebral pairs from five human cadaver spines. Thirty-nine vertebrae were osteoporotic (bone mineral density < 0.75 g/cm2), 27 showed nearly normal values. The cranial vertebra of each pair was augmented with either PMMA (Palacos E-Flow) or experimental brushite cement (EBC), with the caudal vertebra as a control. PMMA and EBC were easy to inject, and vertebral fillings of 20-50% were achieved. The maximal possible filling was inversely correlated to the bone mineral density (BMD) values. Cement extrusion into the spinal canal was observed in 12% of cases. All specimens were subjected to axial compression tests in a displacement-controlled mode. From load-displacement curves, the stiffness, S, and the maximal force before failure, Fmax, were determined. Compared with the native control vertebrae, a statistically significant increase in vertebral stiffness and Fmax was observed by the augmentation. With PMMA the stiffness increased by 174% (P = 0.018) and Fmax by 195% (P = 0.001); the corresponding augmentation with EBC was 120% (P = 0.03) and 113% (P = 0.002). The lower the initial BMD, the more pronounced was the augmentation effect. Both PMMA and EBC augmentation reliably and significantly raised the stiffness and maximal tolerable force until failure in osteoporotic vertebral bodies. In non-porotic specimens, no significant increase was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compare the effects of deflazacort (DEFLA) vs. prednisone (PRED) on bone mineral density (BMD), body composition, and lipids, 24 patients with end-stage renal disease were randomized in a double blind design and followed 78 weeks after kidney transplantation. BMD and body composition were assessed using dual energy x-ray absorptiometry. Seventeen patients completed the study. Glucocorticosteroid doses, cyclosporine levels, rejection episodes, and drop-out rates were similar in both groups. Lumbar BMD decreased more in PRED than in DEFLA (P < 0.05), the difference being particularly marked after 24 weeks (9.1 +/- 1.8% vs. 3.0 +/- 2.4%, respectively). Hip BMD decreased from baseline in both groups (P < 0.01), without intergroup differences. Whole body BMD decreased from baseline in PRED (P < 0.001), but not in DEFLA. Lean body mass decreased by approximately 2.5 kg in both groups after 6-12 weeks (P < 0.001), then remained stable. Fat mass increased more (P < 0.01) in PRED than in DEFLA (7.1 +/- 1.8 vs. 3.5 +/- 1.4 kg). Larger increases in total cholesterol (P < 0.03), low density lipoprotein cholesterol (P < 0.01), lipoprotein B2 (P < 0.03), and triglycerides (P = 0.054) were observed in PRED than in DEFLA. In conclusion, using DEFLA instead of PRED in kidney transplant patients is associated with decreased loss of total skeleton and lumbar spine BMD, but does not alter bone loss at the upper femur. DEFLA also helps to prevent fat accumulation and worsening of the lipid profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a female who is compound heterozygote for two new point mutations in the CYP19 gene. The allele inherited from her mother presented a base pair deletion (C) occurring at P408 (CCC, exon 9), causing a frameshift that results in a nonsense codon 111 bp (37 aa) further down in the CYP19 gene. The allele inherited from her father showed a point mutation from G-->A at the splicing point (canonical GT to mutational AT) between exon and intron 3. This mutation ignores the splice site and a stop codon 3 bp downstream occurs. Aromatase deficiency was already suspected because of the marked virilization occurring prepartum in the mother, and the diagnosis was confirmed shortly after birth. Extremely low levels of serum estrogens were found in contrast to high levels of androgens. Ultrasonographic follow-up studies revealed persistently enlarged ovaries (19.5-22 mL) during early childhood (2 to 4 yr) which contained numerous large cysts up to 4.8 x 3.7 cm and normal-appearing large tertiary follicles already at the age of 2 yr. In addition, both basal and GnRH-induced FSH levels remained consistently strikingly elevated. Low-dose estradiol (E2) (0.4 mg/day) given for 50 days at the age of 3 6/12 yr resulted in normalization of serum gonadotropin levels, regression of ovarian size, and increase of whole body and lumbar spine (L1-L4) bone mineral density. The FSH concentration and ovarian size returned to pretreatment levels shortly (150 days) after cessation of E2 therapy. Therefore, we recommend that affected females be treated with low-dose E2 in amounts sufficient to result in physiological prepubertal E2 concentrations using an ultrasensitive estrogen assay. However, E2 replacement needs to be adjusted throughout childhood and puberty to ensure normal skeletal maturation and adequate adolescent growth spurt, normal accretion of bone mineral density, and, at the appropriate age, female secondary sex maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess bone mineral density (BMD) in idiopathic calcium nephrolithiasis, dual-energy x-ray absorptiometry was performed at lumbar spine, upper femur (femoral neck, Ward's triangle, and total area), distal tibial diaphysis, and distal tibial epiphysis in 110 male idiopathic calcium stone formers (ICSF); 49 with and 61 without hypercalciuria on free-choice diet). Results were compared with those obtained in 234 healthy male controls, using (1) noncorrected BMD, (2) BMD corrected for age, height, and BMI, and (3) a skeletal score based on a tercile distribution of BMD values at following four sites: lumbar spine, Ward's triangle, tibial diaphysis, and tibial epiphysis. After correction, BMD--and therefore also skeletal score--tended to be lower in the stone formers than in controls at five of the six measurement sites, that is, lumbar spine, upper femur, Ward's triangle, tibial diaphysis, and tibial epiphysis, limit of significance being reached for the last two sites without difference between hypercalciuric (HCSF) and normocalciuric stone formers (NCSF). Estimated current daily calcium intake was significantly lower in patients (616 +/- 499 mg/24 h, mean +/- SEM) than in controls (773 +/- 532, p = 0.02). Of 17 patients who in the past had received a low-calcium diet for at least 1 year, 10 had a low skeletal score (4-6) whereas only 1 had a high score (10-12; p = 0.037). Of the 12 stone formers in the study with skeletal score 4 (i.e., the lowest), 8 had experienced in the past one or more fractures of any kind versus only 19 of the remaining 77 patients with skeletal score 5-12 (p = 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES The application of an enamel matrix derivative (EMD) for regenerative periodontal surgery has been shown to promote formation of new cementum, periodontal ligament, and alveolar bone. In intrabony defects with a complicated anatomy, the combination of EMD with various bone grafting materials has resulted in additional clinical improvements, but the initial cellular response of osteoblasts coming in contact with these particles have not yet been fully elucidated. The objective of the present study was to evaluate the in vitro effects of EMD combined with a natural bone mineral (NBM) on a wide variety of genes, cytokines, and transcription factors and extracellular matrix proteins on primary human osteoblasts. MATERIAL AND METHODS Primary human osteoblasts were seeded on NBM particles pre-coated with versus without EMD and analyzed for gene differences using a human osteogenesis gene super-array (Applied Biosystems). Osteoblast-related genes include those transcribed during bone mineralization, ossification, bone metabolism, cell growth and differentiation, as well as gene products representing extracellular matrix molecules, transcription factors, and cell adhesion molecules. RESULTS EMD promoted gene expression of various osteoblast differentiation markers including a number of collagen types and isoforms, SMAD intracellular proteins, osteopontin, cadherin, alkaline phosphatase, and bone sialoprotein. EMD also upregulated a variety of growth factors including bone morphogenetic proteins, vascular endothelial growth factors, insulin-like growth factor, transforming growth factor, and their associated receptor proteins. CONCLUSION The results from the present study demonstrate that EMD is capable of activating a wide variety of genes, growth factors, and cytokines when pre-coated onto NBM particles. CLINICAL RELEVANCE The described in vitro effects of EMD on human primary osteoblasts provide further biologic support for the clinical application of a combination of EMD with NBM particles in periodontal and oral regenerative surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Deproteinized bovine bone mineral (DBBM) is one of the best-documented bone substitute materials for sinus floor elevation (SFE). PURPOSE DBBM is available in two particle sizes. Large particles are believed to facilitate improved neoangiogenesis compared with small ones. However, their impact on the rate of new bone formation, osteoconduction, and DBBM degradation has never been reported. In addition, the implant stability quotient (ISQ) has never been correlated to bone-to-implant contact (BIC) after SFE with simultaneous implant placement. MATERIALS AND METHODS Bilateral SFE with simultaneous implant placement was performed in 10 Göttingen minipigs. The two sides were randomized to receive large or small particle size DBBM. Two groups of 5 minipigs healed for 6 and 12 weeks, respectively. ISQ was recorded immediately after implant placement and at sacrifice. Qualitative histological differences were described and bone formation, DBBM degradation, BIC and bone-to-DBBM contact (osteoconduction) were quantified histomorphometrically. RESULTS DBBM particle size had no qualitative or quantitative impact on the amount of newly formed bone, DBBM degradation, or BIC for either of the healing periods (p > 0.05). Small-size DBBM showed higher osteoconduction after 6 weeks than large-size DBBM (p < 0.001). After 12 weeks this difference was compensated. There was no significant correlation between BIC and ISQ. CONCLUSION Small and large particle sizes were equally predictable when DBBM was used for SFE with simultaneous implant placement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Regenerative periodontal surgery using the combination of enamel matrix derivative (EMD) and natural bone mineral (NBM) with and without addition of platelet-rich plasma (PRP) has been shown to result in substantial clinical improvements, but the long-term effects of this combination are unknown. METHODS The goal of this study was to evaluate the long-term (5-year) outcomes after regenerative surgery of deep intrabony defects with either EMD + NBM + PRP or EMD + NBM. Twenty-four patients were included. In each patient, one intrabony defect was randomly treated with either EMD + NBM + PRP or EMD + NBM. Clinical parameters were evaluated at baseline and 1 and 5 years after treatment. The primary outcome variable was clinical attachment level (CAL). RESULTS The sites treated with EMD + NBM + PRP demonstrated a mean CAL change from 10.5 ± 1.6 to 6.0 ± 1.7 mm (P <0.001) at 1 year and 6.2 ± 1.5 mm (P <0.001) at 5 years. EMD + NBM-treated defects showed a mean CAL change from 10.6 ± 1.7 to 6.1 ± 1.5 mm (P <0.001) at 1 year and 6.3 ± 1.4 mm (P <0.001) at 5 years. At 1 year, a CAL gain of ≥4 mm was measured in 83% (10 of 12) of the defects treated with EMD + NBM + PRP and in 100% (all 12) of the defects treated with EMD + NBM. Compared to baseline, in both groups at 5 years, a CAL gain of ≥4 mm was measured in 75% (nine of 12 in each group) of the defects. Four sites in the EMD + PRP + NBM group lost 1 mm of the CAL gained at 1 year. In the EMD + NBM group, one defect lost 2 mm and four other defects lost 1 mm of the CAL gained at 1 year. No statistically significant differences in any of the investigated parameters were observed between the two groups. CONCLUSIONS Within their limits, the present results indicate that: 1) the clinical outcomes obtained with both treatments can be maintained up to a period of 5 years; and 2) the use of PRP does not appear to improve the results obtained with EMD + NBM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The purpose of the present study is to evaluate the 10-year results following treatment of intrabony defects treated with an enamel matrix protein derivative (EMD) combined with either a natural bone mineral (NBM) or β-tricalcium phosphate (β-TCP). METHODS Twenty-two patients with advanced chronic periodontitis and displaying one deep intrabony defect were randomly treated with a combination of either EMD + NBM or EMD + β-TCP. Clinical evaluations were performed at baseline and at 1 and 10 years. The following parameters were evaluated: plaque index, bleeding on probing, probing depth, gingival recession, and clinical attachment level (CAL). The primary outcome variable was CAL. RESULTS The defects treated with EMD + NBM demonstrated a mean CAL change from 8.9 ± 1.5 mm to 5.3 ± 0.9 mm (P <0.001) and to 5.8 ± 1.1 mm (P <0.001) at 1 and 10 years, respectively. The sites treated with EMD + β-TCP showed a mean CAL change from 9.1 ± 1.6 mm to 5.4 ± 1.1 mm (P <0.001) at 1 year and 6.1 ± 1.4 mm (P <0.001) at 10 years. At 10 years two defects in the EMD + NBM group had lost 2 mm, whereas two other defects had lost 1 mm of the CAL gained at 1 year. In the EMD + β-TCP group three defects had lost 2 mm, whereas two other defects had lost 1 mm of the CAL gained at 1 year. Compared with baseline, at 10 years, a CAL gain of ≥3 mm was measured in 64% (i.e., seven of 11) of the defects in the EMD + NBM group and in 82% (i.e., nine of 11) of the defects in the EMD + β-TCP group. No statistically significant differences were found between the 1- and 10-year values in either of the two groups. Between the treatment groups, no statistically significant differences in any of the investigated parameters were observed at 1 and 10 years. CONCLUSION Within their limitations, the present findings indicate that the clinical improvements obtained with regenerative surgery using EMD + NBM or EMD + β-TCP can be maintained over a period of 10 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractures of the keel bone, a bone extending ventrally from the sternum, are a serious health and welfare problem in free range laying hens. Recent findings suggest that a major cause of keel damage within extensive systems is collisions with internal housing structures, though investigative efforts have been hindered by difficulties in examining mechanisms and likely influencing factors at the moment of fracture. The objectives of this study were to develop an ex vivo impact protocol to model bone fracture in hens caused by collision, to assess impact and bird-related factors influencing fracture occurrence and severity, and to identify correlations of mechanical and structural properties between different skeletal sites. We induced keel bone fractures in euthanized hens using a drop-weight impact tester able to generate a range of impact energies, producing fractures that replicate those commonly found in commercial settings. The results demonstrated that impact energies of a similar order to those expected in normal housing were able to produce fractures, and that greater collision energies resulted in an increased likelihood of fractures and of greater severity. Relationships were also seen with keel's lateral surface bone mineral density, and the peak reactive force (strength) at the base of the manubrial spine. Correlations were also identified between the keel and long bones with respect to both strength and bone mineral density. This is the first study able to relate impact and bone characteristics with keel bone fracture at the moment of collision. Greater understanding of these relationships will provide means to reduce levels of breakage and severity in commercial systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND In postmenopausal women, yearly intravenous zoledronate (ZOL) compared to placebo (PLB) significantly increased bone mineral density (BMD) at lumbar spine (LS), femoral neck (FN), and total hip (TH) and decreased fracture risk. The effects of ZOL on BMD at the tibial epiphysis (T-EPI) and diaphysis (T-DIA) are unknown. METHODS A randomized controlled ancillary study of the HORIZON trial was conducted at the Department of Osteoporosis of the University Hospital of Berne, Switzerland. Women with ≥1 follow-up DXA measurement who had received ≥1 dose of either ZOL (n=55) or PLB (n=55) were included. BMD was measured at LS, FN, TH, T-EPI, and T-DIA at baseline, 6, 12, 24, and 36 months. Morphometric vertebral fractures were assessed. Incident clinical fractures were recorded as adverse events. RESULTS Baseline characteristics were comparable with those in HORIZON and between groups. After 36 months, BMD was significantly higher in women treated with ZOL vs. PLB at LS, FN, TH, and T-EPI (+7.6%, +3.7%, +5.6%, and +5.5%, respectively, p<0.01 for all) but not T-DIA (+1.1%). The number of patients with ≥1 incident non-vertebral or morphometric fracture did not differ between groups (9 ZOL/11 PLB). Mean changes in BMD did not differ between groups with and without incident fracture, except that women with an incident non-vertebral fracture had significantly higher bone loss at predominantly cortical T-DIA (p=0.005). CONCLUSION ZOL was significantly superior to PLB at T-EPI but not at T-DIA. Women with an incident non-vertebral fracture experienced bone loss at T-DIA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to develop a GST-based methodology for accurately measuring the degree of transverse isotropy in trabecular bone. Using femoral sub-regions scanned in high-resolution peripheral QCT (HR-pQCT) and clinical-level-resolution QCT, trabecular orientation was evaluated using the mean intercept length (MIL) and the gradient structure tensor (GST) on the HR-pQCT and QCT data, respectively. The influence of local degree of transverse isotropy (DTI) and bone mineral density (BMD) was incorporated into the investigation. In addition, a power based model was derived, rendering a 1:1 relationship between GST and MIL eigenvalues. A specific DTI threshold (DTI thres) was found for each investigated size of region of interest (ROI), above which the estimate of major trabecular direction of the GST deviated no more than 30° from the gold standard MIL in 95% of the remaining ROIs (mean error: 16°). An inverse relationship between ROI size and DTI thres was found for discrete ranges of BMD. A novel methodology has been developed, where transversal isotropic measures of trabecular bone can be obtained from clinical QCT images for a given ROI size, DTI thres and power coefficient. Including DTI may improve future clinical QCT finite-element predictions of bone strength and diagnoses of bone disease.